K.S. Rangasamy College of Technology (Autonomous Institution affiliated to Anna University, Chennai)

CURRICULUM AND SYLLABI

FOR

M.Tech. Nanoscience and Technology (For the batch admitted in 2022– 2023)

R2022

Accredited by NAAC "A++" Grade, Approved by AICTE, Affiliated to Anna University, Chennai.

> KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India.

Department of Nano Science and Technology

VISION

• To excel as a world class teaching and research hub in Nanoscience and Technology.

MISSION

- To facilitate students and researchers to engage in need-based research in multidisciplinary domains.
- To engage in transformative technology based education that builds industry and society.

Program Educational Objectives (PEOs) for M.Tech. (NST) Programme

- **PEO1:** Our graduates will demonstrate their competence in the processing of nanostructured materials and use them for effective industrial applications.
- **PEO2:** Our graduates will demonstrate interdisciplinary proficiency both in theory and practice in Nanoscience and Technology research.
- **PEO3:** Our graduates will apply the scientific concepts and mathematical analysis to bring out need based nano-products with ethical responsibility.

PROGRAMME OUTCOMES (POs) Engineering Graduates will be able to:

Engineering Graduates will be able to:

- **PO1:** Ability to understand the importance of Nanoscience and Technology and bring out scientific solution for unsolved problems
- **PO2:** Ability to implement multidisciplinary concepts and ideas for the development of innovative Technologies.
- **PO3:** Capability to demonstrate leadership, quality and entrepreneurship.
- PO4: Demonstrate technical skills in operation and maintenance of sophisticated instrumentations.
- **PO5:** Ability to protect their innovative research through IPR.
- PO6: Ability to bring out good quality research proposal as well as research publications.

Program Specific Outcomes (PSOs) for M.Tech. (NANO) Programme

Engineering Graduates will be able to:

- **PSO1:** Analyse and synthesize new nano materials for multiple applications.
- **PSO2:** Design processing conditions to engineer functional nanomaterials.
- **PSO3:** Apply and transfer interdisciplinary systems and Engineering approaches to the field of Nanotechnology.

M.Tech.(NST) - Degree Programme 2022-2023

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAMME OUTCOMES (POs)

The M.Tech. Nanoscience and Technology Programme out comes leading to the achievement of the objectives are summarized in the following Table.

Program Specific	F	PROGR	A MME	оитсс	OMES (F	POs)
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6
PSO1	2	3	3	2	2	2
PSO2	3	2	2	2	3	2
PSO3	2	2	3	2	2	3

Contributions:1-low,2- medium,3-high

Credit Distribution for M.Tech. (NST) Programe-2022 -2023 Batch

S No	Category	Cre	edits Pe	r Semes	ster	Total	Percentage
3 . NO.	Category	I	II		IV	Credits	%
1.	BS	04				04	5.47
2.	PC	17	19	06	-	42	57.53
3.	PE	-	03	06	-	09	12.32
4.	OE	-	-	-	-	-	-
5.	EEC	-	-	06	12	18	24.65
6.	AC	AC I	AC II	-	-	-	-
7.	MC	-	-	-	-	-	-
Т	otal	21	22	18	12	73	100

HS – HUMANITIESANDSOCIALSCIENCES

BS - BASICSCIENCE

ES - ENGINEERINGSCIENCES

PC - PROFESSIONALCORE

PE - PROFESSIONALELECTIVES

MC - MANDATORYCOURSES

OE - OPENELECTIVES

EEC - EMPLOYABILITYENHANCEMENTCOURSES

GE - GENERALELECTIVECOURSES

Open Electives are courses offered by different departments that do not have any prerequisites and could be of interest to students of any branch

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE -637215 (An Autonomous Institution affiliated to Anna University)

BASIC SCIENCE (BS)

S		Course Title	Category	Contact Periods		Т	Ρ	С	Prerequisite
1	60 PNT 101	Mathematical Modelling and Simulation	BS	5	3	2	0	4	Nil

PROFESSIONAL CORE (PC)

S. No.	Course Code	Course Title	Category	Contact Periods	L	т	Р	С	Prerequisite
1.	60 PNT 101	Mathematical Modelling and Simulation	BS	5	3	2	0	4	Nil
2.	60 PNT 102	Quantum Mechanics	PC	5	3	2	0	4	Basics of quantum mechanics
3.	60 PNT 103	Synthesis of Nanostructured Materials	PC	3	3	0	0	3	Basics of Nanomaterial and chemistry
4.	60 PNT 104	Nanoelectronics	PC	3	3	0	0	3	Fundamental of electronics
5.	60 PNT 105	Nano Biotechnology	PC	3	3	0	0	3	Fundamental of biology
6.	60 PNT 1P1	Advanced Nanomaterials Synthesis Laboratory	PC	4	0	0	4	2	Nil
7.	60 PNT 1P2	Nano Biotechnology Laboratory	PC	4	0	0	4	2	Nil
8.	60 PNT 201	Advanced Characterisation Techniques	PC	3	3	0	0	3	Nil
9.	60 PNT 202	Nano Photonics and its Applications	PC	3	3	0	0	3	Nil
10.	60 PNT 203	Nanolithography and Nanofabrication	PC	3	3	0	0	3	Nil
11.	60 PNT 204	Advanced Carbon Nanotubes and Applications	PC	3	3	0	0	3	Basics of Carbon Nanotubes
12.	60 PED 001	Research Methodology and IPR	PC	3	3	0	0	3	Nil
13.	60 PNT 2P1	Advanced Characterisation Laboratory	PC	4	0	0	4	2	Nil
14.	60 PNT 2P2	Nanomaterials Device Fabrication and Analysis Laboratory	PC	4	0	0	4	2	Nil
15.	60 PNT 301	Applications of Nanocomposites	PC	3	3	0	0	3	Nil
16.	60 PNT 302	Nanotechnology in Energy Storage Devices	PC	3	3	0	0	3	Basics of Electronics

PROFESSIONAL ELECTIVES (PE) SEMESTER II, ELECTIVE I

S. No.	Course Code	Course Title	Category	Contact Periods		Т	Ρ	С	Prerequisite
1.	60 PNT E11	Polymers in Nanotechnology	PE	3	З	0	0	3	Nil
2.	60 PNT E12	Nanotechnology in Biomedical Instrumentation	PE	3	3	0	0	3	Nil
3.	60 PNT E13	Nanosensors and Applications	PE	3	3	0	0	3	Nil
4.	60 PNT E14	Nanodevices	PE	3	3	0	0	3	Nil
5.	60 PNT E15	Advanced Solid State Materials	PE	3	3	0	0	3	Nil
6.	60 PNT E16	Thin Film Science and Technology	PE	3	3	0	0	3	Nil

SEMESTER III, ELECTIVE II

S. No.	Course Code	Course Title	Category	Contact Periods		т	Ρ	С	Prerequisite
1.	60 PNT E21	Nanotribology	PE	3	3	0	0	3	Nil
2.	60 PNT E22	Nanotechnology in Automobiles	PE	3	3	0	0	3	Nil
3.	60 PNT E23	Corrosion Engineering	PE	3	3	0	0	3	Nil
4.	60 PNT E24	Nano Safety and Environmental Issues	PE	3	3	0	0	3	Nil
5.	60 PNT E25	Micro and Nano Electro Mechanical Systems	PE	3	3	0	0	3	Nil
6.	60 PNT E26	Nanotechnology In Industries	PE	3	3	0	0	3	Nil

SEMESTER III, ELECTIVE III

S. No.	Course Code	Course Title	Category	Contact Periods		Т	Ρ	С	Prerequisite
1.	60 PNT E31	Social Impact of Nanotechnology	PE	3	3	0	0	3	Nil
2.	60 PNT E32	Computer Modeling and Simulation	PE	3	3	0	0	3	Nil
3.	60 PNT E33	Nanotechnology in Defense and Security	PE	3	3	0	0	3	Nil
4.	60 PNT E34	Nanotechnology in Food Preservation and Safety Management	PE	3	3	0	0	3	Nil
5.	60 PNT E35	Nanotechnology in Textile and Agriculture Industry	PE	3	3	0	0	3	Nil
6.	60 PNT E36	Self Assembly of Nanostructures	PE	3	3	0	0	3	Nil

AUDITCOURSES (AC) Semester I &II

S. No.	Course Code	Course Title	Category	Contact Periods		Т	Ρ	С	Prerequisite
1.	60 PAC 001	English for Research Paper Writing	AC	2	2	0	0	0	Nil
2.	60 PAC 002	Disaster Management	AC	2	2	0	0	0	Nil
3.	60 PAC 003	Constitution of India	AC	2	2	0	0	0	Nil

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S. No.	Course Code	Course Title	Category	Contact Periods		Т	Ρ	С	Prerequisite
1.	60 PNT 3P1	Project Work - Phase I	EEC	12	0	0	12	6	Nil
2.	60 PNT 4P1	Project Work - Phase II	EEC	24	0	0	24	12	Nil

M.Tech.(NST) - Degree Programme 2022-2023 K.S.RANGASAMY COLLEGE OF TECHNOLOGY,TIRUCHENGODE -637215

(An Autonomous Institution affiliated to Anna University)

COURSES OF STUDY

(For the candidates admitted from 2022-2023 onwards)

SEMESTER - I

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Ρ	С
		THEORY						
1.	60 PNT 101	Mathematical Modelling and Simulation	BS	5	3	2	0	4
2.	60 PNT 102	Quantum Mechanics	PC	5	3	2	0	4
3.	60 PNT 103	Synthesis of Nanostructured Materials	PC	3	3	0	0	3
4.	60 PNT 104	Nanoelectronics	PC	3	3	0	0	3
	60 PNT 105	Nano Biotechnology	PC	3	3	0	0	3
6	60 PAC 001	English for Research Paper Writing	AC	2	2	0	0	0
		PRACTICALS						
7.	60 PNT 1P1	Advanced Nanomaterials Synthesis Laboratory	PC	4	0	0	4	2
8.	60 PNT 1P2	Nano Biotechnology Laboratory	PC	4	0	0	4	2
			Total	29	17	4	8	21

SEMESTER - II

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Ρ	С
		THEORY						
1.	60 PNT 201	Advanced Characterisation Techniques	PC	3	3	0	0	3
2.	60 PNT 202	Nano Photonics and its Applications	PC	3	3	0	0	3
3.	60 PNT 203	Nanolithography and Nanofabrication	PC	3	3	0	0	3
4.	60 PNT 204	Advanced Carbon Nanotubes and Applications	PC	3	3	0	0	3
5.	60 PNT E1*	Professional Elective I	PE	3	3	0	0	3
6.	60 PED 001	Research Methodology and IPR	PC	3	3	0	0	3
7.	60 PAC 002	Disaster Management	AC	2	2	0	0	0
		PRACTICALS						
8.	60 PNT 2P1	Advanced Characterisation Laboratory	PC	4	0	0	4	2
9.	60 PNT 2P2	Nanomaterials Device Fabrication and Analysis Laboratory	PC	4	0	0	4	2
			Total	28	20	0	8	22

M.Tech.(NST) - Degree Programme 2022-2023 SEMESTER - III

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Ρ	С			
		THEORY									
1. 60 PNT 301 Applications of Nanocomposites PC 3 3 0 0 3											
2.	60 PNT 302	Nanotechnology in Energy Storage Devices	PC	3	3	0	0	3			
3.	60 PNT E2*	Professional Elective II	PE	3	3	0	0	3			
4.	60 PNT E3*	Professional Elective III	PE	3	3	0	0	3			
PRACTICALS											
5.	60 PNT 3P1	Project Work - Phase I	EEC	12	0	0	12	6			
			Total	24	12	0	12	18			

SEMESTER - IV

S. No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С
		PRACTICALS						
1.	60 PNT 4P1	Project Work - Phase II	EEC	24	0	0	24	12
			Total	24	0	0	24	12

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE =73

Note:

HS- Humanities and Social Sciences including Management Courses

BS- Basic Science Courses

ES-Engineering Science Courses

PE-Professional Core Courses

PE-Professional Elective Courses

OE- Open Elective Courses

EEC-Employability Enhancement Courses

MC-Mandatory Courses

AC-Audit Courses

- L : Lecture
- T : Tutorial
- P : Practical

Note:

1. Hour Lecture is equivalent to 1 credit

2. Hour Tutorial is equivalent to 1credit

3. HoursPracticalisequivalentto1credit

M.Tech.(NST) - Degree Programme 2022-2023 K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215 (An Autonomous Institution affiliated to Anna University)

M.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted from 2022-2023 onwards)

FIRST SEMESTER

			Duration of	Weightag	je of Marks	6	Minimum for Pass Seme Exa	in Enc ster
S. No.	Course Code	Name of the Course	Internal Exam	Continuous Assessment*	End Semester Exam	Max. Marks	End Semester Exam	Total
	·		THEOP	RY		·		
1	60 PNT 101	Mathematical Modelling and Simulation	2	40	60	100	45	100
2	60 PNT 102	Quantum Mechanics	2	40	60	100	45	100
3	60 PNT 103	Synthesis of Nanostructured Materials	2	40	60	100	45	100
4	60 PNT 104	Nanoelectronics	2	40	60	100	45	100
5	60 PNT 105	Nano Biotechnology	2	40	60	100	45	100
6	60 PAC 001	English for Research Paper Writing	2	100	00	100	00	0
			PRACTIO	CAL				
7	60 PNT 1P1	Advanced Nanomaterials Synthesis Laboratory	3	60	40	100	45	100
8	60 PNT 1P2	Nano Biotechnology Laboratory	3	60	40	100	45	100

SECOND SEMESTER

				Weight a	ige of Mark	Minimum Marks for Pass in End Semester Exam		
S. No.	Course Code	Name of the Course	Internal Exam	Continuous Assessment*	End Semester Exam **	Max. Marks	Semester	Total
			THEOR	Y		·	·	
1	60 PNT 201	Advanced Characterisation Techniques	2	40	60	100	45	100
2	60 PNT 202	Nano Photonics and its Applications	2	40	60	100	45	100
3	60 PNT 203	Nanolithography and Nanofabrication	2	40	60	100	45	100
4	60 PNT 204	Advanced Carbon Nanotubes and Applications	2	40	60	100	45	100
5	60 PNT E1*	Professional Elective I	2	40	60	100	45	100
6	60 PED 001	Research Methodology and IPR	2	40	60	100	45	100

		M.Tech.(NST) - De	egree Progra	mme 2022-2023				
7	60 PAC 002	Disaster Management	2	100	00	100	00	0
	PRACTICAL							
8	60 PNT 2P1	Advanced Characterisation Laboratory	3	60	40	100	45	100
9	60 PNT 2P2	Nanomaterials Device Fabrication and Analysis Laboratory	3	60	40	100	45	100

THIRD SEMESTER

	Course Code		Duration of	Weight a	ge of Mark	s	Minimun for Pass Seme Exa	in End ster
S. No.		Name of the Course		Continuous Assessment*	End Semester Exam **	Max. Marks	End Semester Exam	Total
	-		THEOR	Y	-		•	-
1	60 PNT 301	Applications of Nanocomposites	2	40	60	100	45	60
2	60 PNT 302	Nanotechnology in Energy Storage Devices	2	40	60	100	45	60
3	60 PNT E2*	Professional Elective II	2	40	60	100	45	60
4	60 PNT E3*	Professional Elective III	2	40	60	100	45	60
			PRACTIC	AL				
5	60 PNT 3P1	Project Work - Phase I	-	100	-	100	-	-

FOURTH SEMESTER

0.14	O autoria		Duration of	Weight	tage of Mar	ks	Minimur for Pass Seme Exa	s in Enc ester
S. No.	Course Code	Name of the Course	Internal Exam	Continuous Assessment*	End Semester Exam **	Max. Marks	End Semester Exam	Total
			PRAC	FICAL		•		•
1	60 PNT 4P1	Project Work - Phase II	-	40	60	100	45	100

* CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

** End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for the award of terminal examination marks

	M.Tech.(NST) - Degree	Programme 202	2-2023			
60 PNT 101	MATHEMATICAL MODELLING	Category	L	Т	Ρ	Credit
	AND SIMULATION	PC	3	2	0	4

Objectives

- To acquire knowledge of solving differential equations.
- To familiarize the concepts of numerical integration techniques.
- To get exposed to modeling equations and their applications.
- To acquire knowledge on various modeling and simulation techniques.
- To understand various methods in testing of hypothesis.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

		Remember,
CO1	Solve differential equations using finite difference scheme.	Understand,
		Apply
		Remember,
CO2	Apply appropriate techniques for numerical integration	Understand,
		Apply
	Crete a model that adequately describes the problems, using the appropriate	Remember,
CO3	technology.	Understand,
	lechnology.	Apply
		Remember,
CO4	Simulate Nano technological materials systems with the aid of computation.	Understand,
		Apply
		Remember,
CO5	Apply the statistical tests in data investigation.	Understand,
		Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3						2	2
CO2	3	3	3	3	2						2	2
CO3	2	2	2	2	2						2	2
CO4	2	2	2	2	2						2	2
CO5	3	3	3	3	3						2	2

Bloom's Category		s Assessment s (Marks)	Model Exam	End Sem Examination
	1	2	(Marks)	(Marks)
Remember (Re)	10	10	10	10
Understand (Un)	10	10	30	30
Apply (Ap)	40	40	60	60
Analyze (An)	0	0	0	0
Evaluate (Ev)	0	0	0	0
Create (Cr)	0	0	0	0
Total	60	60	100	100

		K.S.Ran			Degree Programme f Technology		ous R20	22		
					tical Modellin					
				– Nano S	Science and T	Fechnology	/			
Sem	ester	Ho	urs/Week		Total hrs	Credit	N	Maximum	Marks	
ocin	03101	L	Т	Р	Total III 3	С	CA	ES	Total	
		3	2	0	60	4	40	60	100	
Eule prob	er's metho elems: Fin	SOLUTION OF E od – Modified Eu ite difference me ations – Hyperbo	ler's metho ethod – Po	od – Run isson eq	ge-Kutta meth					[9]
Nume quadi	erical integ rature forr	TEGRATION grations by Trape nula – Double in nethod – Galerki	tergrals us							[9]
Math pher	nematical	AL MODELING modeling – Phys Concept of phys utions.	sical simula							[9]
Basi proc Mon	essing of te Carlo s	ts of simulation materials – Mo imulation – Mod IYPOTHESIS	nte Carlo i	method -	- Basics of the					[9]
Test and	ting of hyp goodness	othesis for small s of fit. ANOVA – Randomized B	: One way	classific	ation – Comp	letely Rand n .	omized D	Design – T	⊺wo way	
						Tota	al Hours:	45 + 15 (Tutorial)	60
	t book(s)									
1.	S.C. Cha Delhi, 20	apra and R.P.Ca)10	anale, "Nur	merical m	nethods for En	gineers", Ta	ata McGr	aw Hill, 6t	h Edition,	New
2.		tel and B. Smith, ic Press, 2002	, "Understa	anding mo	olecular simula	ation from a	lgorithm t	o applicat	ions", Kl	uwar
Ref	erence(s)	:								
1.		n, S.R.K Iyengar e International (F				s for Scienti	fic and Er	ngineering	Computat	tion",
2.	R.J. Sch	nilling and S.L. n publishers, Ne	Harris, "A	pplied N		ods for Er	ngineers	using MA	TLAB and	d C",
3.	Erwin Kr	eyzig, "Advance	d Engineei	ring Math	ematics", Johr	n Wiley & So	ons, 10th	Edition, 20	020	
4.		ota, and J.N.Kap New Delhi, 2020		lamentals	s of Mathemati	ical Statistic	cs", Sulta	n Chand a	and sons,	12th
5.	Prof.Sou									

Course Contents and Lecture Schedule

S.No.	Торіс	No. of Hours
1.0	NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS	
1.1	Euler's and Modified Euler's Method	1
1.2	Runge-Kutta method (Fourth order only).	1
1.3	Boundary value problems: Finite difference method	2
1.4	Poisson equation	2
1.5	Laplace's equation Gauss seidal method	1
1.6	Parabolic equations	2
1.7	Tutorial	3
2.0	NUMERICAL INTEGRATION	
2.1	Numerical integrations by Trapezoidal and Simpson's 1/3 and 3/8 rules	1
2.2	Two and Three point Gaussian quadrature formula	1
2.3	Double integrals using Trapezoidal and Simpson's rules	2
2.4	Finite Element method: Rayleigh-Ritz method	1
2.5	Finite Element method: Galerkin method	1
2.6	Finite Element method: Galerkin method problems	1
2.7	Tutorial	3
3.0	MATHEMATICAL MODELING	
3.1	Mathematical modeling introduction	1
3.2	Physical simulation	1
3.3	Mathematical modeling Advantages and limitations	2
3.4	Process control	2
3.5	Transport phenomena	1
3.6	Concept of physical domain and computational domain	1
3.7	Assumptions and limitations in numerical solutions	1
3.8	Tutorial	3
4.0	SIMULATION	3
4.1	Basic concepts of simulation and data manipulation, data exchange of the structure	1
4.2	properties and processing of materials	2
4.3	Monte Carlo method	1
4.4	Basics of the Monte Carlo method	1
4.5	Algorithms for Monte Carlo simulation	1
4.6	Modified Monte Carlo techniques	2
4.7	Tutorial	3
5.0	TESTING OF HYPOTHESIS	-
5.1	Testing of hypothesis for small samples using t-test	2
5.2	F-test, Chi-square test for independence of attributes and goodness of fit	1
5.3	Tutorial	1
5.4	ANOVA: One way classification – Completely Randomized Design	1
5.5	Two-way classification – Randomized Block Design	2
5.6	Latin Square Design	2
5.9	Tutorial	3
0.0	Total	60

Course Designers

1. Dr.K.PRABAKARAN -prabakaran@ksrct.ac.in

M.Tech.(NST) - Degree Programme 2022-2023

60 PNT 102	Quantum Mechanics	Category	L	т	Р	Credit	
OUPNI IUZ		PC	3	2	0	4	

Objective

- To learn the Plank's quantum hypothesis
- To apply the function of operator
- To identify the operators and computation law
- To analysis the atom model
- To apply the principle of quantum mechanics

Prerequisite

Basics of quantum mechanics

Course Outcomes

On the	On the successful completion of the course, students will be able to						
CO1	CO1 Recall basic knowledge of quantum theory						
CO2	CO2 Analyze the wave mechanics						
CO3	Apply the operators in specific problems	Analyze					
CO4	Apply the variation principle in different methods	Apply					
CO5	Identify the types of approximation methods	Analyze					

Mapping with Programme Outcomes

· · • g						
COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern Continuous Assessment Tests (Marks) **End Sem Examination Bloom's Category** (Marks) 1 2 Remember 10 10 20 10 10 Understand 20 10 10 30 Apply 10 10 20 Analyze 10 10 20 Evaluate 10 10 10 Create

K.S.Rangasamy College of Technology - Autonomous Regulation									
	60 PNT 102 - Quantum Mechanics								
		Depai	tment of N	anoscience a	and Techno	ology			
Semester	ł	lours/Week	(Total hro	Credit	Maximum Marks			
Semester	L	Т	Р	Total hrs.	С	C	E	Total	
I	3	2	0	60	4	40	60	100	
INTRODUCTION									
Limitation of classical mechanics - Plank's quantum hypothesis - Einstein's photoelectric effect -								[40]	
Wave nature of particles - Heisenberg Uncertainty principle - Schrodinger's time dependent and								[12]	
independent wave equations - Particle in a one dimensional box - Harmonic oscillator.									
WAVE MECHANICS							[12]		

	M.Tech.(NST) - Degree Programme 2022-2023					
Linea	r operator - Hermitian operator - Linear harmonic oscillator - Operator method – Postulates					
of qua	antum mechanics - Equations in motion – Ehrenfest's theorem - Hydrogen atom - Hydrogen					
orbitals - Matrix representation of wave functions.						
OPE	RATORS AND COMPUTATION LAWS					
Linea	r momentum operator – Properties of Hermitian operator – Angular momentum operators	[12]				
– Ladder operators – Parity operator – Commuting and non-commuting operators – Commutation						
relatio	on Lx and Ly - Commutation relation L^2 and Lx – Commutation relation L+ and L					
VAR	ATION AT PRINCIPLES					
Varia	tion at method - Ground state of hydrogen molecule - Ground state of Helium atom –	[12]				
Perturbation theory in non-degenerate case - First order perturbation – Harmonic perturbation						
- Transition to continuous states.						
APPI	ROXIMATION METHODS					
Klein	-Gordon equation – Charge and current densities – Inadequacy of Klein-Gordon equation –					
Dirac	's equation for a free particle - Dirac's matrices – Properties of Dirac's matrices – Negative	[12]				
energ	y states – Hartree-Fockequation.WKB Approximations-adiabatic approximation-Sudden					
appro	eximation. Applications of quantum mechanics.					
	Total Hours (45+15)	60				
Refe	rence(s):					
1 G. Aruldhass, "Quantum Mechanics", Prentice Hall of India pvt. Ltd. New Delhi, 2004.						
2 Kurt Gottfried, Tung-Mowyan " Quantum Mechanics Fundamentals", Springer, 2003.						
3	3 Steven Weinberg "Lectures on Quantum Mechanics" USA Cambridge University press, 2013					
4	AjoyGhatak and Lokanathan "Quantum Mechanics:Theory and Applications", Kluwer Acade publications,2004	mic				

Course Contents and Lecture Schedule

S. No		No. of
3. NU	Торіс	Hours
1	INTRODUCTION	
1.1	Limitation of classical mechanics	1
1.2	Plank's quantum hypothesis	1
1.3	Einstein's photoelectric effect	1
1.4	Wave nature of particles	1
1.5	Heisenberg Uncertainty principle	1
1.6	Schrodinger's time dependent wave equations	2
1.7	Schrodinger's time independent wave equations	2
1.8	Particle in a one dimensional box	1
1.9	Harmonic oscillator	2
2	WAVE MECHANICS	
2.1	Linear operator	1
2.2	Hermitian operator	1
2.3	Linear harmonic oscillator	1
2.4	Operator method	1
2.5	Postulates of quantum mechanics	1
2.6	Equations in motion	1
2.7	Ehrenfests theorem	2
2.8	Hydrogen atom - Hydrogen orbitals	2
2.9	Matrix representation of wave functions	2
3	OPERATORS AND COMPUTATION LAWS	
3.1	Linear momentum operator	1
3.2	Properties of Hermitian operator	1
3.3	Angular momentum operators	1
3.4	Ladder operators	1
3.5	Parity operator	1
3.6	Commuting and non-commuting operators	1
3.7	Commutation relation Lx and Ly	2

3.8	Commutation relation L ² and Lx	2
3.9	Commutation relation L+ and L-	2
4	VARIATION AT PRINCIPLES	
4.1	Variation at method	1
4.2	Ground state of hydrogen molecule	1
4.3	Ground state of Helium atom	2
4.4	Perturbation theory in non-degenerate case	2
4.5	First order perturbation	2
4.6	Harmonic perturbation	2
4.7	Transition to continuous states	2
5	APPROXIMATION METHODS	
5.1	Klein-Gordon equation	1
5.2	Charge and current densities	1
5.3	Inadequacy of Klein-Gordon equation	1
5.4	Dirac's equation for a free particle	1
5.5	Dirac's matrices – Properties of Dirac's matrices	1
5.6	Negative energy states	1
5.7	Hartree-Fockequation.WKB Approximations	2
5.8	Adiabatic approximation - Sudden approximation.	2
5.9	Applications of quantum mechanics	1
	Total	45

M.Tech.(NST) - Degree Programme 2022-2023

1.11.

Course Designer

Satheeskumar (<u>satheeskumars@ksrct.ac.in</u>)

60 DNT 402	Synthesis of Nanostructured Materials	Category	L	Т	Ρ	Credit
60 PNT 103	Synthesis of Nanostructured Materials	PC	3	0	0	3

Objective

- To practice the simple methods for the synthesis of nanomaterials.
- •To synthesize nanomaterials by various chemical and physical routes.
- •To study the merits of various process techniques.
- To inculcate different process techniques for nanostructure materials.
- •To understand the biological and hybrid types of synthesis techniques.

Prerequisite

NiL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Synthesis the various nanoscale materials by the application of chemical methods	Apply
CO2	Explain the thin film fabrication using physico chemical technique	Analyse
CO3	Sketch the mechanical approaches for nano materials production	Apply
CO4	Create the micro and nanoscale patterns by approaching Etching process	Create
CO5	Classify the bio and green synthesis process for nano materials	Analyse

Mapping with Programme Outcomes

Dr. S.

2

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	1	2	2
CO2	3	2	1	2	2	3
CO3	2	3	2	3	2	2
CO4	3	2	1	2	2	3
CO5	2	3	2	2	2	3

M.Tech.(NST) - Degree Programme 2022-2023

Bloom's Catagory	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	30
Evaluate	10	10	10
Create	10	10	10

		AA DNE 4	-		- Autonom	-		
				esis of Nanos				
		Depa lours/Weel		anoscience a	Credit	•••	winauna Mari	
Semester		T	k P	Total hrs.	Credit	C	aximum Marl	KS Total
	3	0	Г 0	45	3	40	60	100
	METHODS	U	0	40	5	40	00	100
		ent types o	f coatings -S	Spin coating-	Self-assemb	lv- (Periodic	c) - starting	
		• •	-	ly using conv		• •		[9]
	•			-Blodgett film		0	•	[0]
method.								
	VD METHO	DS						
			Atmospheric	; pressure CV	D (APCVD)	- Low pres	ssure CVD	
				eposition (PEC				
enhanced o	hemical vap	or depositi	ion (PHCVE	D)- LCVD Las	ser-Induced	CVD. Phys	sical vapor	101
deposition-	Sputter tech	nologies- D	Diode sputte	ring - Magnet	ron sputteri	ng- Ion bea	m (sputter)	[9]
deposition, i	ion implantat	ion and ion	assisted de	position – Cat	thodic arc de	position - P	ulsed laser	
deposition-	metal organ	deposition- metal organic chemical vapor deposition (MOCVD) and Molecule beam epitaxy						
			a vapor aop	Dosition (INOC	vD) and w	iolecule bea	am epitaxy	
(MBE).	-		i vapor dop		vD) and w	Iolecule bea	am epitaxy	
MECHANIC		DS						
MECHANIC Micro milling	g – Micro dril	DS ling – Micro	o grinding pr	ocesses - Ele	ctrical disch	arge machir	ning (EDM)	[9]
MECHANIC Micro milling micro mach	g – Micro dril nining - lase	DS ling – Micro r micro/nar	o grinding pr nomachining	ocesses - Ele - Dry etchir	ctrical disch	arge machir	ning (EDM)	[9]
Micro millino micro mach Reactive ior	g – Micro dril nining - Iase n etching- Ma	DS ling – Micro r micro/nar agnetically e	o grinding pr nomachining	ocesses - Ele	ctrical disch	arge machir	ning (EDM)	[9]
MECHANIC Micro milling micro mach Reactive ior ETCHING T	g – Micro dril hining - lase h etching- Ma ECHNIQUE	DS ling – Micro r micro/nar agnetically e S	o grinding pr nomachining enhanced R	ocesses - Ele - Dry etchir IE- Ion beam	ctrical disch ng- isotropic etching.	arge machir anisotropic	ning (EDM) c etching -	[9]
MECHANIC Micro milling micro mach Reactive ior ETCHING T Important o	g – Micro dril hining - lase h etching- Ma ECHNIQUE f etching pro	DS ling – Micro r micro/nar agnetically e S ocess in se	o grinding pr nomachining enhanced R emiconducto	ocesses - Ele g - Dry etchir IE- Ion beam pr- Wet etchir	etrical disch ng- isotropic etching. ng of silicon	arge machir anisotropic - Isotropic	ning (EDM) c etching - etching -	
MECHANIC Micro milling micro mach Reactive ior ETCHING T Important o Anisotropic	g – Micro dril hining - lase h etching- Ma ECHNIQUE f etching pro etching – E	DS ling – Micro r micro/nar agnetically e S Docess in se lectrochem	o grinding pr nomachining enhanced R emiconducto ical etching	rocesses - Ele g - Dry etchir IE- Ion beam pr- Wet etchir g - Vapor pha	ectrical disch ng- isotropic etching. ng of silicon nse etching	arge machir anisotropic - Isotropic - Dry etchir	hing (EDM) c etching - etching - ng- Other	[9]
MECHANIC Micro milling micro mach Reactive ior ETCHING T Important o Anisotropic etching tech	g – Micro dril hining - lase h etching- Ma ECHNIQUE f etching pro etching – E hiniques-Wet	DS ling – Micro r micro/nar agnetically e S ocess in se lectrochem chemical et	o grinding pr nomachining enhanced R emiconducto ical etching	ocesses - Ele g - Dry etchir IE- Ion beam pr- Wet etchir	ectrical disch ng- isotropic etching. ng of silicon nse etching	arge machir anisotropic - Isotropic - Dry etchir	hing (EDM) c etching - etching - ng- Other	
MECHANIC Micro milling micro mach Reactive ior ETCHING T ETCHING T Important o Anisotropic etching tech Biological	g – Micro dril nining - lase n etching- Ma ECHNIQUE f etching pro etching – E nniques-Wet and green S	DS ling – Micro r micro/nar agnetically e S ocess in se ilectrochem chemical et ynthesis	o grinding pr nomachining enhanced R emiconducto ical etching tching- Appli	ocesses - Ele - Dry etchir IE- Ion beam or- Wet etchir - Vapor pha ication and pro	ectrical disch ng- isotropic etching. ng of silicon ise etching operties of d	arge machir anisotropic - Isotropic - Dry etchii ifferent etch	ning (EDM) c etching - etching - ng- Other nants.	[9]
MECHANIC Micro milling micro mach Reactive ior ETCHING T Important o Anisotropic etching tech Biological a Microbial sy	g – Micro dril hining - lase h etching- Ma ECHNIQUE f etching pro etching – E hiniques-Wet and green S rnthesis- bac	DS ling – Micro r micro/nar agnetically e S ccess in se clectrochem chemical et ynthesis teria- yeast	o grinding pr nomachining enhanced R emiconducto ical etching tching- Appli	ocesses - Ele - Dry etchir IE- Ion beam or- Wet etchir - Vapor pha ication and pro-	ectrical disch ng- isotropic etching. ng of silicon use etching operties of d –bio fertilize	arge machir anisotropic - Isotropic - Dry etchii ifferent etch	ning (EDM) c etching - etching - ng- Other nants.	
MECHANIC Micro milling micro mach Reactive ior ETCHING T Important o Anisotropic etching tech Biological a Microbial sy	g – Micro dril hining - lase h etching- Ma ECHNIQUE f etching pro etching – E hiniques-Wet and green S rnthesis- bac	DS ling – Micro r micro/nar agnetically e S ccess in se clectrochem chemical et ynthesis teria- yeast	o grinding pr nomachining enhanced R emiconducto ical etching tching- Appli	ocesses - Ele - Dry etchir IE- Ion beam or- Wet etchir - Vapor pha ication and pro	ectrical disch ng- isotropic etching. ng of silicon use etching operties of d –bio fertilize	arge machir anisotropic - Isotropic - Dry etchin ifferent etch r- plant extr	ning (EDM) c etching - etching - ng- Other ants. act- neem-	[9]
MECHANIC Micro milling micro mach Reactive ior ETCHING T Important o Anisotropic etching tech Biological a Microbial sy tridax-eucal	g – Micro dril hining - lase h etching- Ma ECHNIQUE f etching pro- etching – E hiniques-Wet and green S mthesis- bac yptus-fruit pe	DS ling – Micro r micro/nar agnetically e S ccess in se clectrochem chemical et ynthesis teria- yeast	o grinding pr nomachining enhanced R emiconducto ical etching tching- Appli	ocesses - Ele - Dry etchir IE- Ion beam or- Wet etchir - Vapor pha ication and pro-	ectrical disch ng- isotropic etching. ng of silicon use etching operties of d –bio fertilize	arge machir anisotropic - Isotropic - Dry etchin ifferent etch r- plant extr	ning (EDM) c etching - etching - ng- Other nants.	[9]
MECHANIC Micro milling micro mach Reactive ion ETCHING T Important o Anisotropic etching tech Biological a Microbial sy tridax-eucal	g – Micro dril hining - lase h etching- Ma ECHNIQUE f etching pro etching – E hiniques-Wet and green S rothesis- bac yptus-fruit pe s):	DS ling – Micro r micro/nar agnetically e S occess in se lectrochem chemical et ynthesis teria- yeast eel- advanta	o grinding pr nomachining enhanced R emiconducto ical etching tching- Appli ching- Appli - algae -gre ages, limitati	ocesses - Ele - Dry etchir IE- Ion beam or- Wet etchir - Vapor pha ication and pro- ten synthesis ions, applicatio	ectrical disch ng- isotropic etching. ng of silicon ase etching operties of d –bio fertilize ons.	arge machir anisotropic - Isotropic - Dry etchir ifferent etch r- plant extr	ning (EDM) c etching - etching - ng- Other nants. act- neem- otal Hours	[9]
MECHANIC Micro milling micro mach Reactive ior ETCHING T Important o Anisotropic etching tech Biological a Microbial sy tridax-eucal Reference(1 M. J	g – Micro dril nining - lase n etching- Ma ECHNIQUE f etching pro etching – E niques-Wet and green S mthesis- bac yptus-fruit pe s): . Jackson, "N	DS ling – Micro r micro/nar agnetically e S ocess in se lectrochem chemical et ynthesis teria- yeast eel- advanta	o grinding promachining enhanced R emiconducto ical etching tching- Appli - algae -gre ages, limitati	ocesses - Ele - Dry etchir IE- Ion beam or- Wet etchir - Vapor pha ication and pro-	ectrical disch ng- isotropic etching. ng of silicon use etching operties of d -bio fertilize ons.	arge machir - Isotropic - Dry etchin ifferent etch r- plant extr To Press, 2005	hing (EDM) c etching - etching - ng- Other hants. act- neem- otal Hours	[9] [9] 45

3	G. Cao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications" Imperial College Press, 2004
4	W.T.S. Huck, "Nanoscale Assembly: Chemical Techniques (Nanostructure Science and Technology)", Springer 2006

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	CHEMICAL METHODS	
1.1	Sol-gel synthesis	1
1.2	Different types of coatings and spin coatings	1
1.3	Self-assembly (Periodic)	1
1.4	Starting points for self- assembly	1
1.5	Directed self-assembly using conventional lithography	1
1.6	Template self-assembly	1
1.7	Vapor liquid solid growth	1
1.8	Langmuir-Blodgett films	1
1.9	DNA self-assembly-Hummers method	1
2	CVD AND PVD METHODS	
2.1	CVD Chemical vapor deposition	1
2.2	Atmospheric pressure CVD (APCVD)	1
2.3	Low pressure CVD (LPCVD)	1
2.4	Plasma enhanced chemical vapor deposition (PECVD) - The HiPCO method	1
2.5	Photo-enhanced chemical vapor deposition (PHCVD)- LCVD Laser-Induced CVD	1
2.6	Physical vapor deposition- Sputter technologies- Diode sputtering	1
2.7	Magnetron sputtering- Ion beam (sputter) deposition, ion implantation and ion assisted deposition	1
2.8	Cathodicarc deposition - Pulsed laser deposition	1
2.9	Metal organic chemical vapor deposition (MOCVD) and Molecule beam epitaxy (MBE).	1
3	MECHANICAL METHODS	
3.1	Micromilling	1
3.2	Microdrilling	1
3.3	Microgrinding processes	1
3.4	Electrical discharge machining (EDM) micro machining	1
3.5	laser micro/nanomachining	1
3.6	Dry etching- isotropic anisotropic etching	1
3.7	Reactive ion etching	1
3.8	Magnetically enhanced RIE	1
3.9	Ion beam etching.	1
4	ETCHING TECHNIQUES	
4.1	Important of etching process in semiconductor	1
4.2	Wet etching of silicon	1
4.3	Isotropic etching	1
4.4	Anisotropic etching	1
4.5	Electrochemical etching	1
4.6	Vapor phase etching	1
4.7	Dry etching	1
4.8	Other etching techniques, Wet chemical etching.	1
4.9	Application and properties of different etchants.	1
5	BIOLOGICAL AND GREEN SYNTHESIS	
5.1	Microbial synthesis	2
5.2	Bacteria- yeast- algae -green synthesis	1
5.3	Bio fertilizer- plant extract	1
5.4	Neem-tridax-eucalyptus-fruit peel	1
5.5	Advantages, limitations, applications.	1
0.0	Total Hours	45
		40

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

60 DNT 404	Nancoloctronico		Category	L	т	Р	Credit
60 PNT 104	Nanoelectronics	noelectronics		3	0	0	3

Objective

- To help the learners to understand basic s about the particles and waves
- To provide an overview of the electron transport in semiconductors and nanostructure
- To familiarize learners with the basics of materials in nanoelectronics

• To familiarize the learners with the processing growth fabrication and measurement techniques

• To enlighten the learners to understand various methods, materials and its applications.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Learn an emerging idea of nanoelectronics and particles and waves	Understand
CO2	Implement the wave particle duality behavior in nanotechnology	Apply
CO3	Acquire the electron transport properties in semiconductor	Analyze
CO4	Recognize the electron transport in nanostructures	Apply
CO5	Capture the various materials for nanoelectronics and Identify the basic types of semiconductor heterostructure	Analyze

Mapping with Programme Outcomes

	COs	PO1	PO2	PO3	PO4	PO5	PO6
ĺ	CO1	3	2	1	2	3	2
ĺ	CO2	3	3	2	1	3	3
ĺ	CO3	2	2	3	2	2	2
ĺ	CO4	3	2	2	2	3	2
	CO5	2	3	2	2	2	2

Plaam'a Catagony	Continuous Asses	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	20
Apply	10	10	20
Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	10

				(NST) - Degree Programm				
		K.S.Rang		Ilege of Technology PNT 104- Nanoelect		nous R 202	2	
		F		ch – Nano Science a		logy		
Semester	F	lours / W	/eek	Total hrs.	Credit		aximum Mark	
	L	T	P		C	CA	ES	Total
	3		0 the learners	45 to understand basic	3	40	60 d wayoo	100
Objective(s)	• • • • • • • • • • • • • • • • • • • •	To provi To famili To famili techniqu	de an overv iarize learne iarize the lea ies	riew of the electron transfer with the basics of arners with the proce	ansport in s materials ir ssing growt	emiconduct n nanoelectr th fabrication	ors and nanos onics n and measure	ement
Course Outcomes	 Lea Imp Acq Rec Cap 	rn an em lement th juire the e cognize th oture the	erging idea ne wave par electron trar ne electron t	he students will be of nanoelectronics at ticle duality behavior asport properties in se transport in nanostruc erials for nanoelectro ructure.	nd particles in nanotech emiconducto ctures.	nnology or.	isic types of	
decide the nui	mber of h	ours for e	each unit de	e syllabus are only in pending upon the co d against each unit ir	ncepts and	depth. Que:		
	, Classica vards Ohr	al free ele		/, Sommerfeld theory Resistor: Conductanc				
Diode – V-I C	or – Type: haracteri lysis of a	s – Drift a stics of a diode –	ı Diode – Di Breakdown	n Carriers – P-N Jund iode specifications – diodes: Avalanche & sting	Diode resis	stance &	o; Capacitance	e – [191
CC Configura	on Transi tions, Fie	stor (BJT eld Effect): Construct Transistor (stors ion –-Types of Opera (FET) – Junction Fiel es – Effect of Temper	d Effect Tra	Insistor (JFE	ET): Constructi	on [9]
Electrons in d	oth scales quantum	s of the el wells: Si	lectrons in s ngle modula	structures colids, Statistics of the ation-doped heteroju Electron transport in q	nctions, Nu	merical ana	alysis of a sing	
properties an devices - gas	ctrics - Fo d integra sensitive	erroelecti tion - ca e FETs -	ric random a lorimetric s resistive se	access memory - Fe- ensors - electrocher miconductor gas sen ctor sensor array.	nical cells	- surface a	nd bulk acous	stic [9]
							Total	hours: 4
			oelectronics	s Editors: Fahrner, W	olfgang (Ed	.) Springer-'	Verlag Berlin	
^{2.} Univers	ity press	2008.		lap.Michel A Stroscic Publisher: Neha P				ambridge

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	Basics of Nano electronics	
1.1	Electrons flow	1
1.2	Classical free electron theory	1
1.3	Sommerfeld theory	1
1.4	The quantum of conductance	1
1.5	Coulomb blockade	1
1.6	Towards Ohm's law	1
1.7	The Elastic Resistor	1
1.8	Conductance of an Elastic Resistor	1
1.9	Elastic Resistor- Heat dissipation	1
2	Semiconductor Diodes	
2.1	Types of Semiconductor	1
2.2	Drift and Diffusion Carriers	1
2.3	P-N Junction Diode: Ideal Diode & Practical Diode	1
2.4	V-I Characteristics of a Diode	1
2.5	Diode resistance & Capacitance	1
2.6	Load line analysis of a diode	1
2.7	Breakdown diodes: Avalanche & Zener diodes	1
2.8	Varactor diodes and Tunnel Diodes	1
2.9	Schottky Diodes Diode Testing	1
3	Bipolar Junction and Field Effect Transistors	
3.1	Bipolar Junction Transistor (BJT): Construction	1
3.2	Types of Operation	1
3.3	I/O Characteristics of CE Configurations	1
3.4	I/O Characteristics of CB and CC Configurations	1
3.5	Junction Field Effect Transistor (JFET): Construction	1
3.6	principle of operation	1
3.7	Characteristic Curves	1
3.8	Effect of Temperature on JFET parameters	1
3.9	MOSFET	1
4	Electrons transport in low-dimensional structures	
4.1	Time and length scales of the electrons in solids	1
4.2	Statistics of the electrons in solids	1
4.3	Statistics of the electrons in nanostructures	1
4.4	Electrons in quantum wells	1
4.5	Single modulation-doped hetero junctions	1
4.6	Numerical analysis of a single hetero junction	1
4.7	Control of charge transfer	1
4.8	Electron transport in quantum wires	1
4.9	Electron transport in quantum dots	1
5	Applications of Nano electronics Devices	
5.1	Nano ferroelectrics	1

	M.Tech.(NST) - Degree Programme 2022-2023	
5.2	Ferroelectric random access memory - Fe-RAM circuit design	1
5.3	Ferroelectric thin film properties and integration	1
5.4	Calorimetric sensors - electrochemical cells	1
5.5	Surface and bulk acoustic devices	1
5.6	Gas sensitive FETs - resistive semiconductor gas sensors	1
5.7	Electronic noses	1
5.8	Identification of hazardous solvents and gases	1
5.9	Semiconductor sensor array	1
	Total	45

Course Designers

1. Dr.T.Baranidharan - <u>baranidharan@ksrct.ac.in</u>

	New Pitterback	Category	L	т	Ρ	Credit
60 PNT 105	Nano Biotechnology	PC	3	0	0	3

Objective(s)

- To extend their knowledge of fundamentals of biology
- To recognize the basic knowledge of Nano biotechnology and DNA structures.
- To interpret the application of nanomaterials in biotechnology and acquire the knowledge about the DNA, proteins, amino acids, drug delivery, biomedicine etc.,

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able

CO1	To know about the basic concept of biology of cell functions and system	Remember, Understand,			
		Apply			
CO2	Overview of different types of devices used in interphase system	Remember, Understand, Aanalyze			
CO3	Identify various protein based nanostructures and its uses	Remember, Understand, Analyze			
CO4	Identify various DNA based nanostructures and its uses	Remember, Understand, Apply			
CO5	Understand the properties and applications of nano biomaterials	Remember, Understand, Apply			

Mapping with Programme Outcomes

COURSE NAME	со			Р	0				PSO	
COURSE NAME	CO	1	2	3	4	5	6	1	2	3
Nano Biotechnology	CO1	3	3	1	3	2	3	3	1	3
Nano Biolecinology	CO2	2	2	2	2	3	2	3	1	3

Passed in BoS Meeting held on 20/07/2022, Approved in Academic Council Meeting held on 23/07/2022

M.Tech.((NST) -	Dearee	Programme	2022-2023

CO3	3	3	2	2	2	3	3	3	3
CO4	2	3	3	2	2	2	3	1	3
CO5	3	3	2	1	3	2	3	2	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

Bloom's Category	Continuous Ass (Mar		End Semester Examination (Marks)
	1	2	
Remember	10	10	20
Understand	10	10	30
Apply	10	10	20
Analyze	10	10	10
Evaluate	10	0	10
Create	10	0	10

		M	Tech – Nan	o Science and	Technolog	v		
Semester			s/Week		Credit	<i>,</i>	Maximum	Marks
	L	Т	Р	Total hrs.	С	CA	ES	Total
	3	0	0	45	3	40	60	100
broblasts-cel	biological sy	ystems – and diffe	Types of cel erentaiton- c	lls – cellular co ell division-plur	ripotency an	d totipotency		1 [0]
INTERPHAS Interphase sy bricks and m	E SYSTEMS /stems of dev ortar: self as) vices for r sembled r	medical implanation	ell communica ants – nano-bic - nano analytica	ometrics – in	0 0	ipids as nano-	· [9]
and template	S-layer Pro es – protein ronic device	tein-struc is as tra es and p	cture -chemis nsducers a	stry -assembly - nd amplifiers o nocontainers -	of biomolec	ular recognit	tion events -	[9]
	nanostructure ugates of go	es -fabrica Id nanopa	ation-topogra	aphic and electi A oligomers – /			•	[O]
•	articles and ethods – r	nanotechr	nology in a	ein based recc agriculture – growth.			•	1 [0]
							Total Hours	45
Text Book(s):							
1 David L Ba	ainbridge, "In	tellectual	Property", L	ongman, 9th E	dition, 2012.			
2 Cooper Do	onald R, Schi , 11e (2012).		nela S and S	Sharma JK, "Bu	isiness Rese	earch Method	ls", Tata McGi	aw Hil

	M.Tech.(NST) - Degree Programme 2022-2023
2.	T. Pradeep, "Nano: The Essentials", McGraw – Hill education, 2007.
3.	Challa, S.S.R. Kumar, Josef Hormes, CarolaLeuschaer,"Nanofabrication Towards Biomedical Applications, Techniques, Tools, Applications and Impact", Wiley – VCH, 2005.
4.	Nicholas A. Kotov, "Nanoparticle Assemblies and Superstructures", CRC, 2006.

Course Content and Lecture Schedule

S. No.	Topics	No. of hours
1.0	BIOLOGY OF CELL AND CELL FUNCTIONS	
1.1	Introduction to biological systems.	1
1.2	Types of cells – cellular components	1
1.3	astrocytes-oligodendroglia-fibroblasts	1
1.4	cell proliferation and differentaiton- cell division	1
1.5	pluripotency and totipotency	1
1.6	differentiated cells and cancer cells-sub cellular components-	2
1.7	Cell communication and cell signaling	2
2.0	INTERPHASE SYSTEMS	
2.1	Interphase systems of devices for medical implants	2
2.2	Nano-biometrics	1
2.3	Lipids as nano-bricks and mortar	2
2.4	Self assembled nanolayers	2
2.5	Nano analytical methods	2
3.0	PROTEIN BASED NANOSTRUCTURES	
3.1	Protein based nanostructures building blocks	1
3.2	Protein based templates	2
3.3	Proteins as transducers and amplifiers	1
3.4	Biomolecular recognition events	1
3.5	Nanobioelectronic devices	1
3.6	Polymer nanocontainers	1
3.7	Microbial production of inorganic nanoparticles	1
3.8	Magnetosomes	1
4.0	DNA BASED NANOSTRUCTURES	
4.1	DNA based nanostructures	1
4.2	Topographic and electrostatic properties of DNA Properties of proteins	1
4.3		2
	Hybrid conjugates of gold nanoparticles	
4.5 4.6	DNA oligomers Use of DNA molecules in nanomechanics	1 2
4.7	DNA in computing	1
5.0	APPLICATIONS	-1
5.1	Metal nanoparticles	1
5.2	Nucleic acid and protein based recognition groups	2
5.3	Application in optical detection methods	1
5.4	Nanotechnology in agriculture	1
5.5	Fertilizers and pesticides	1
5.6	Natural nanocomposites	2
5.7	Silica nanoparticles in maize growth.	1
	Total	45

Course Designer

Dr.B. Kalpana – kalpana@ksrct.ac.in

Category	L	Г	Ρ	Credit
AC	2	0	0	0

Objective

- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

Prerequisite

NIL

Course Outcomes

On the success full completion of the course, students will be able to

CO1	Understand that how to improve your writing skills and level of readability
CO2	Learn about what to write in each section
CO3	Understand the skills needed when writing a Title
CO4	Understand the skills needed when writing the Conclusion
CO5	Ensure the good quality of paper at very first-time submission

Assessment Pattern

Bloom's Category	Continuous Assess	ment Tests (Marks)
Bloom's Calegory	1	2
Remember	10	10
Understand	30	30
Apply	30	30
Analyse	30	30
Evaluate	0	0
Create	0	0

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	1	2	3	2
CO2	2	1	1	1	2	3
CO3	3	2	1	1	2	2
CO4	3	2	1	1	1	2
CO5	1	2	2	1	1	2

M.Tech.(NST) - Degree Programme 2022-2023

					llege of Techr			22		
			60 PCA		lish for Resea mon to all Bra		Writing			
			Hours	s/Week		Credit		Maximum	Mark	s
Ser	mester	L	T	P	Total hrs.	C	СА	ES		rota
		2	0	0	30	0	100	-	100	
Plan	nning and	to Resear d Preparat seing Conci	ion, Word	Order, Bre	eaking up long lundancy, Avoid	g sentences ding Ambigu	s, Structuring uity and Vague	Paragraphs eness	and	[6]
Clar		ho Did W		ighting You bstracts, Int	r Findings, He roduction	edging and	Criticizing, P	Paraphrasing	and	[6]
Key need	ded wher	needed w writing ar	n Introduct		y skills are need eeded when w heck					[6]
Skill whe	n writing	eded when			skills needed v when writing th			skills are ne	eded	[6]
					when whitig a		5115			
Use		Skills es, checkin	g Plagiaris		nsure paper is			ly be the first	time	[6]
Use subr	ful phrase mission	es, checkin	g Plagiaris					ly be the first Total He		[6] 30
Use subr	ful phrase mission t Book(s	es, checkin): Wallwork, E		m, how to e		as good as i	t could possib	Total He	ours	
Use subr	ful phrase mission t Book(s Adrian London	es, checkin): Wallwork, E , 2011	English for	m, how to e Writing Res	nsure paper is	as good as i Springer Ne	t could possib	Total He	ours	
Use subr Tex 1.	ful phrase mission t Book(s Adrian London	es, checkin): Wallwork, E , 2011 How to Writ	English for	m, how to e Writing Res	nsure paper is search Papers,	as good as i Springer Ne	t could possib	Total He	ours	
Use subr Tex 1.	ful phrase mission t Book(s Adrian London Day R I erence(s): Wallwork, E , 2011 How to Writ	English for te and Pub	m, how to e Writing Res	nsure paper is search Papers,	as good as i Springer Ne nbridge Univ	t could possib w York Dordre versity Press 2	Total Heidelbe	ours	
Use subr 1. 2 Refe	ful phrase mission Adrian London Day R I erence(s	es, checkin): Wallwork, E , 2011 How to Writ): rt R Writing	English for te and Pub	m, how to e Writing Res blish a Scien ce, Yale Uni	nsure paper is search Papers, tific Paper, Car	as good as i Springer Ne nbridge Univ	t could possib w York Dordre versity Press 2 Google Books	Total He echt Heidelbe 2006 5) 2006	ours erg	
Use subr 1. 2 Refe 1.	ful phrase mission t Book(s Adrian London Day R I erence(s Goldbo Highma	es, checkin Wallwork, E , 2011 How to Writ): rt R Writing	English for te and Pub for Science book of Wi	m, how to e Writing Res blish a Scien ce, Yale Uni riting for the	nsure paper is search Papers, tific Paper, Car versity Press (a	as good as i Springer Ne nbridge Univ available on Sciences, Sl	t could possib w York Dordre versity Press 2 Google Books AM. Highman	Total He echt Heidelbe 2006 3) 2006 3 book 1998	ours erg	

60 PNT 1P1

Category	L	Т	Ρ	Credit
PC	0	0	4	2

Objective

- To prepare the various nanoscale materials through defend synthesis approach
- To develop the new synthesis method for nanomaterials preparation
- To acquire the technical skills required to prepare the nanoparticles
- To gain experience handling of nanomaterials and maintenance
- To understand the characteristics of nanomaterials by effect of various synthesis method.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Classify the synthesis of nanomaterials with different chemical methods	Understand
CO2	Distinguish the synthesis of nanomaterials with different physical methods	Analyse
CO3	Acquire the characteristics of nanomaterials	Create
CO4	Compare salient feature of nanomaterials	Apply
CO5	Identify the best suitable method for nanomaterials production for required applications	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	1	2	2
CO2	2	3	2	2	1	2
CO3	3	2	2	2	2	3
CO4	2	3	3	2	3	3
CO5	2	3	2	3	2	3

Dia amia Catanami	Model lab Asses	End Sem Examination		
Bloom's Category	1	2	(Marks)	
Understand	0	0	10	
Apply	20	20	30	
Analyse	20	20	30	
Create	20	20	30	

M.Tech.(NST) - Degree Programme	2022-2023
---------------------------------	-----------

		Donorta	nant of N	anagaianag an	d Tashnalar			
		lours/Week		anoscience an	Credit		aximum M	arke
Semester	L		Р	 Total hrs. 	C	C		Total
1	0	0	4	60	2	60	40	100
 Prepa To sy To pr Prepa Green Green Prepa Mass Prepa Prepa Prepa Prepa Prepa Prepa Synth 	aration of SiC onthesis the of epare the me aration of ma n synthesis of aration of bio aration of bio aration of nan aration of nan aration of nan aration of Po tigation of ar aration of Pe hesis of ZnO	D ₂ nanopartion different size etal nanopartion agnetitic nanopartic of Cu/SiO ₂ /A o nanocomposition of Al ₂ O ₃ -ZrO no bioactive lymeric Nano ntimicrobial si rovskite Naro nanostructu	cles from of CuO r ticles (Ag oparticles g nanopa osites (TiC 2 nanocor glass (Sid ofibers (P studies or noparticles res by the	rticles (TiO ₂ /ZnG its bulk SiO ₂ the nanoparticles by /Au) through Cl (Fe ₂ O ₃ /Ni/Fe ₂ T rticles by Extrac O ₂ -SiO ₂) through mposite form na O ₂ /CaO/P ₂ O ₅)/H VA/MgO, TiO ₂) n (Ag/TiO ₂ /ZnO) s (BaTiO ₃ /CaMg e microwave irra s Using Emulsio	rough mecha v Sono-chemi nemical reduc TiO ₃) using Co ction/Reduction n wet chemica atural mineral IAp) through through Elec nanoparticle gTiO ₃) by soli adiation meth	nical attrition cal method ction method op-Precipitat on process al approach by hot air s Hydrotherr tro spinnin s. d state met od	on (Planeta d tion metho n. Spray pyro nal methoo g process.	nry Ball m d. Ilysis. d.
	sis of Nanom	naterials Lab	oratory N	lanual", Departr	ment of NST,	KSRCT, 2	018	
eference(s): Willard	Morritt Do	on and Cat	tlo "Inotru	montal Mathad	of Analysis"			2 Now
Delhi, 2		an. and Set	ue instru	mental Methods	s of Analysis"	, UBS PUE		SINEW

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

60 DNT 402	Nana Biotochnology Laboratory	Category	L	Т	Р	Credit
60 PNT 1P2	Nano Biotechnology Laboratory	PC	0	0	4	2

Objective

- To understand the experimental component in the manipulation of bio molecules and • nanoparticles.
- To demonstrate the release of drug from nanoparticles ٠
- To learn the Practice the animal tissue culture media preparation and culture inoculation •
- To learn the viability testing of animal cells treated with nanoparticles using Haemocytometer •
- To learn the knowledge about the Practice of study of invitro bioactivity of natural/synthetic • nanoparticles using simulated body fluid.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Demonstrate the bacterial inoculation and cultivation	Understand
CO2	Evaluate the antibacterial study using nanoparticles	Evaluate
CO3	Practice the antibacterial study using nanoparticles by turbidometric method	Apply
CO4	Analysis the antibacterial study using nanoparticles by using cottion fabrics	Analyze
CO5	Familiar about the drug encapsulation efficiency in nanoparticles	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	1	2	1
CO2	2	3	3	2	1	1
CO3	3	2	2	2	1	3
CO4	3	2	3	2	3	3
CO5	2	3	2	3	2	1

Bloom's Category	Continuous Ass (Ma		End Semester Examination (Marks		
	1	2			
Remember	10	10	20		
Understand	10	10	30		
Apply	10	10	20		
Analyze	10	10	10		
Evaluate	10	10	10		
Create	10	10	10		

			60 PNT '	1P2 - Nan	o Biotechnolo	ogy Laborato	ry		
					anoscience ar	••			
Som	Semester	Ho	ours/Weel	(Total hrs.	Credit	Ma	aximum N	larks
Sell	lester	L	Т	Р	Total III's.	С	C E 60 40	Total	
		0	0	4	60	2	60	40	100
1.	Prepara	tion of cultu	re media	and Bacte	erial inoculatio	n			
2.	Screenii	ngofantibac	terialprop	ertyofnatu	ural/syntheticn	anoparticlest	yMullerHi	ntonAgarp	olate
	method								
3.	Screenii method	•	algrowthin	hibitoryac	ctivityofnatural	/syntheticnar	oparticles	byTurbidc	ometric
4.	Determi	nation of ar	itibacterial	activity c	of nanoparticle	s coated cott	on fabrics		
5.	Demons	stration of d	rug encap	sulation e	efficiency				
6.	Determi	nation of St	ability of n	atural/syı	nthetic nanopa	articles			
7.	Drug rel	ease studie	s from na	noparticle	es at Physiolog	gical conditio	ns		
8.	Animal t	issue cultur	e media p	reparatio	n and culture	inoculation			
9.	Viability	testing of a	nimal cells	s treated	with nanopart	icles using Ha	aemocytor	neter	
10	0. Study o	f <i>in vitro</i> bio	activity of	natural/s	ynthetic nano	particles usin	g simulate	d body flu	iid
Lab Ma	anual :								
1.	"Nanob	iotechnology	/ Lab Man	ual", Depa	artment of Nan	o Science and	Technolo	av. KSRC	Г.
Refere	nce(s):			· · ·					
1.	VCH,20	04.			chnology: Cond				
2.					arolaLeuschae ations and Imp				edical

Course Designer

Mr.R.Mohanraj (mohanrajr@ksrct.ac.in)

	M.Tech.(NST) - Degree Prog	gramme 20	022-2023				
60 PNT 201	Advanced Characterisation		Category	L	т	Р	Credit
60 PNT 201	Techniques		PC	3	0	0	3

Objective

- To analysis the relative methods of various characterisation techniques.
- Acquire the basic knowledge about the different characterization techniques.
- Study the application of scanning probe microscopy.
- Acquire the knowledge of various nanoscale materials through characterization techniques.
- Understand the role of mechanical characterization for materials properties analysis.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Distinguish the various microscopy Techniques.	Remember
CO2	Enumerate the characterization parameters of Scanning Probe Microscopy.	Analyse
CO3	Examine the principles of different types of Spectroscopic techniques.	Analyse
CO4	Manipulate the nanomaterials in mechanical characterization.	Apply
CO5	Analyse the types of structural parameters in characterization techniques.	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	2	2	1
CO2	2	3	2	3	3	2
CO3	3	2	2	3	2	3
CO4	2	2	3	2	3	2
CO5	3	3	2	3	3	3

Bloom's Catagory	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	30
Evaluate	10	10	10
Create	10	10	10

	K.S.R			Technology		-	tion	
				ced Characte		•		
Department of Nanoscience and Technology Hours/Week Credit Maximum Mark								
Semester	Hours/Week			Total hrs.	Credit			
	L	Т	P		С	C	E	Total
II	3	0	0	45	3	40	60	100
– Transmis Scanning t	oscopy – Co ssion electro unneling ele	on micros ectron mic	copy-High ı roscopy –	ectron Microsc resolution Tr Image collec by – In-situ me	ansmission ction in ele	Electron r ectron micro	microcopy-	[9]
			•	y m-situ me	asurements			
Scanning P probe lithog	robe micros	copy – Ato anning nea	omic manipu ar field optic	Ilations – Ato cal microscop oscopy.			-	[9]
spectroscop – Dynamic I Differential S	orption and by – Raman s Light Scatter Scanning Ca	spectrosco ing (DLS) - lorimetry (I	py X-ray pho - NMR Spec DSC) – Ther	 Basics - A toelectron spe troscopy – Th mo mechanica 	ectroscopy – ermo gravin	- Brillouin sp netric Analys	ectroscopy	[9]
Modulus an – Abrasion a – Nano tribo	and wear res	ng capabili istance – S o tribometre	ity of nano re Super plastic	egion/ compre ity – Nano Ind Force apparat	entation-Sir	ngle point – I	Multipoint.	[9]
X- ray diffra macromoleo UV-PL-Phot	cular crystallo columinescer	rer formula ography us nce - Thern	 Rietveld re ing synchrot no luminesce 	efinement usir ron radiation - ence – X-ray a S) – Electron	- electron an absorption F	nd neutron of ine Structur	diffraction – e (XAFS) –	[9]
						Т	otal Hours	45
Reference(,							
				McGraw Hill,				
3 Mick	Wilson, Kam	aliKannang	gara, Geoff S	Introduction to Smith, Michelle es", Overseas	e Simmons,	BurkarRagu		
	d, Merritt, De			al Methods of			DISTS New	Delhi

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	MICROSCOPY	
1.1	Optical microscopy	1
1.2	Confocal microscopy - Electron Microscopy	1
1.3	Scanning electron microscopy	1
1.4	Transmission electron microscopy	1
1.5	High resolution Transmission Electron microcopy	1
1.6	Scanning tunneling electron microscopy	1

	M.Tech.(NST) - Degree Programme 2022-2023	
1.7	Image collection in electron microscopes	1
1.8	Environmental transmission electron microscopy	1
1.9	In-situ measurements	1
2	SCANNING PROBE MICROSCOPY	
2.1	Scanning Probe microscopy	1
2.2	Atomic manipulations	1
2.3	Atomic force microscopy	1
2.4	Scanning probe lithography	1
2.5	Scanning near field optical microscopy	1
2.6	Secondary ion mass (SIMS) spectrometry	1
2.7	Scanning tunneling electron microscopy	1
3	SPECTROSCOPY	-
3.1	Optical absorption and emission spectroscopy	1
3.2	Basics - AAS – ICP OES	1
3.3	Infrared surface spectroscopy	1
	Raman spectroscopy X-ray photoelectron	
3.4	spectroscopy	1
3.5	Brillouin spectroscopy	1
3.6	Dynamic Light Scattering (DLS)	1
3.7	NMR Spectroscopy	1
3.8	Thermo gravimetric Analysis (TGA)	1
3.9	Differential Scanning Calorimetry (DSC)	1
3.10	Thermo mechanical Analysis (TMA).	1
<u>4</u>	MECHANICAL CHARACTERISATION	
	Modulus and load carrying capability of nano	
4.1	region/ compression	1
4.2	micro hardness	1
4.3	Fatigue	1
4.4	Abrasion and wear resistance	1
4.5	Super plasticity	1
4.6	Nano Indentation	1
4.0	Single point – Multipoint	1
4.8	Nano tribology.	1
4.9	Nano tribometre.	1
4.10	Surface Force apparatus	1
4.11	Quartz crystal microbalance	1
4.12	Friction force microscope	1
5	STRUCTURAL CHARACTERISATION	
5.1	X- ray diffraction	2
5.2	Scherer formula	1
5.3	Rietveld refinement using FullProftexturing	1
5.4	Micro strain macromolecular crystallography using	1
	synchrotron radiation	
5.5	electron and neutron diffraction	1
5.6	UV-PL-Photoluminescence	1
5.7	Thermo luminescence	1
5.8	X-ray absorption Fine Structure (XAFS)	1
5.9	Extended X- ray absorption fine structure (EXAFS)	1
5.10	Electron spectroscopy for chemical Analysis	1
0.10	(ESCA).	
	Total Hours	45

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

60 DNT 202	Nano Photonics And its	Category	L	т	Р	Credit
60 PNT 202	Applications	PC	3	0	0	3

Objective

- Impart the knowledge about the photon technology of nano structured materials.
- To understand the basic ideas about the photonics and microscopy treatment.
- To learn the next generation nanophotonic technologies.
- To analysis nanophotonic applications in biotechnology
- To Learn the various photonic applications of nanomaterials

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recall basic ideas and fundamentals of nano photonics	Remember
CO2	Acquire the knowledge about Confinement of Photons and Electrons	Apply
CO3	Analyze the Photonic Crystals and Fibers the nanolithography techniques	Analyze
CO4	Apply photonic technique into biosensing.	Apply
CO5	Classify the applications of photonics in various filed.	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Dia amia Catanami	Continuous Assessm	End Sem Examination		
Bloom's Category	1	2	(Marks)	
Remember	10	10	10	
Understand	10	10	10	
Apply	10	10	30	
Analyze	10	10	30	
Evaluate	10	10	20	
Create	10	10	0	

		K.S.R	angasam		- Degree Program Technology			ation	
			-		Photonics ar		-		
			Depa	artment of N	lanoscience a	and Techno	ology		
Sama	otor	Hours/Week			Total hrs.	Credit	М	aximum Mar	(S
Seme	ster	L	Т	Р	- Total hrs.	С	С	E	Tota
		3	0	0	45	3	40	60	100
INTRO	ODUC	TION							
			•		erin Nanotech	•••			[9]
		•			Basic Rese		•	nt of New	[9]
	<u> </u>				n tunneling, pł	noton tunne	ling.		
-	-	TONICS FO							
					nces - Free-Sp		-		
				•	ractions - Axia				[0]
	•				ment of Elec				[9]
Interac	ction I	Dynamics, N	lew Coop	erative Tran	sitions, Nanos	scale Electi	ronic Energ	y Transfer,	
Coope	erative	Emission.							
•		of nanopho							
Photo	nic Cr	ystals and F	ibers-Plas	smonics – Me	etamaterialsSt	ructures in	Nanocompo	osite - rare-	101
earth-	doped	glasses - N	lanostruct	ured Multipha	asic Compost	ites- photon	ic band gap	o materials-	[9]
Organ	ic mat	terials.							
		TONICS in E							
			•		Optical Diag		-		[9]
					g, Biosensing				[9]
-			rs. Nanoc	linics for Opt	ical Diagnostic	s and Targ	eted Therap	ру.	
APPL									
			•	-	-Organic Light	-	•		[9]
	,	,	-polymeric	c (PLED)	-display tech	nology an	d lighting.	chip-to-chip	[9]
interco	onnect	ts.							
							Т	otal Hours	45
Text E	•	•							
					Wiley & Sons				
	Serge	y V. Gapone	nka Intra	duction to Na	nophotonics",	Cambridge	Universitv	Press 2010	
2.			nko, intro					11000, 2010.	
2. Refere	ence(s):							
2. Refere 1.	ence(F. Gra editio	s): aham Smith, n, John Wille	Terry A. Ł y Sons lin	King and Dan nited, 2007.	Wilkins, "Opti	ics and Pho	tonics: An Ii	ntroduction", s	
2. Refere 1. 2.	F. Gra edition	s): aham Smith, n, John Wille elly, Michael	Terry A. k y Sons lin J. "Semic	King and Dan nited, 2007. onductor Opt	Wilkins, "Opti tical Amplifiers	ics and Pho 3" Springer 2	tonics: An Ii 2002. ISBN:	ntroduction", s 978-0-306- 4	
2. Reference 1. 2. 3.	F. Gra edition Conne Marc Editio	s): aham Smith, n, John Wille elly, Michael J. Madou Fu nCRC Press	Terry A. k y Sons lin J. "Semic ndamenta , 2005	King and Dan nited, 2007. onductor Opt als of Microfa	Wilkins, "Opti	ics and Pho " Springer 2 Science of	tonics: An li 2002. ISBN: Miniaturizat	ntroduction", s 978-0-306- 4 ion, Second	8156-7.

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	INTRODUCTION	
1.1	Scope and nature of Photonics	1
1.2	Nanophotonics	1
1.3	Frontierin Nanotechnology	1
1.4	Impact of Nanophotonics	1
1.5	Trends in Nanophotonics	1
1.6	Opportunities for Basic Research and Development	1
1.7	scope of nanophotonics	1

1.8 Electron tunneling 1 1.9 Photon tunneling 1 2 NANOPHOTONICS FOUNDATION 1 2.1 Photons and Electrons 1 2.2 Similarities and Differences, Free-Space Propagation 1 2.3 Confinement of Photons and Electrons 1 2.4 Nanoscale Optical Interactions 1 2.5 Axial Nanoscopic Localization - Lateral Nanoscopic Localization - Lateral Interactions 1 2.6 Nanoscale Confinement of Electronic Interactions 1 2.7 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 3.1 Photonic Crystals 1 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.3 Nanostructured Multiphasic Composites 1 3.4 Metamaterials Structures - Nanocomposite 1 3.7 Nanostructured Multiphasic Composites 1 3.7 Nanostructured Multiphasic Composites 1 3.8 Photonic band gap materials 1 1		M.Tech.(NST) - Degree Programme 2022-2023	
2 NANOPHOTONICS FOUNDATION 2.1 Photons and Electrons 1 2.2 Similarities and Differences, Free-Space 1 2.3 Confinement of Photons and Electrons 1 2.4 Nanoscale Optical Interactions 1 2.5 Axial Nanoscopic Localization 1 2.6 Nanoscopic Localization 1 2.6 Nanoscopic Interaction Dynamics 1 2.7 Nanoscale Confinement of Electronic 1 1.1 1 1 1 2.6 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 3.1 Photonic Crystals 1 3.1 Photonic Crystals 1 3.3 Nanocomposite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.5 Rare-earth-doped glasses 1 3.7 Properties 1 3.8 Photonic band gap materials 1 3.9 Organic materials 1 4 NANO STRUCTURE DEVICES	1.8		1
2.1 Photons and Electrons 1 2.2 Similarities and Differences, Free-Space Propagation 1 2.3 Confinement of Photons and Electrons 1 2.4 Nanoscale Optical Interactions 1 2.5 Axial Nanoscopic Localization - Lateral Nanoscopic Localization 1 2.6 Interactions 1 1 Nanoscale Confinement of Electronic Interactions 1 2.7 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 3 PROPERTIES OF NANOPHOTONIC MATERIALS 1 3.1 Photonic Crystals 1 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.3 Nanostructured Multiphasic Composite 1 3.6 Nanostructured Multiphasic Composites 1 3.7 properties 1 3.8 Photonic band gap materials 1 3.9 Organic materials 1 4 NANO STRUCTURE DEVICES 1 4.1 Near-Field Bioimaging <t< td=""><td>1.9</td><td>Photon tunneling</td><td>1</td></t<>	1.9	Photon tunneling	1
2.2 Similarities and Differences, Free-Space 1 2.3 Confinement of Photons and Electrons 1 2.4 Nanoscale Optical Interactions 1 2.5 Axial Nanoscopic Localization - Lateral 1 Nanoscopic Localization 1 2.6 Nanoscopic Localization 1 2.6 Nanoscopic Localization 1 2.7 Nanoscopic Interaction Dynamics 1 2.8 New Cooperative Transitions 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 3.1 Photonic Crystals 1 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.3 Nanocomposite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.5 Rare-earth-doped glasses 1 3.7 properties 1 3.8 Photonic band gap materials 1 4 NANO STRUCTURE DEVICES 1 4.1 Nanoparticles for Targeted Therapy 1 4.2 Nanoparticles for Optical Diagnostics	2	NANOPHOTONICS FOUNDATION	
2.2 Propagation 1 2.3 Confinement of Photons and Electrons 1 2.4 Nanoscale Optical Interactions 1 2.5 Axial Nanoscopic Localization - Lateral Nanoscopic Localization 1 2.6 Nanoscopic Localization 1 2.6 Nanoscopic Interaction Dynamics 1 2.7 Nanoscopic Interaction Dynamics 1 2.8 New Cooperative Transitions 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 3.1 Photonic Crystals 1 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.3 Nanocomposite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.5 Rare-earth-doped glasses 1 3.6 Nanostructured Multiphasic Composities 1 3.7 Nanostructured Multiphasic Composities 1 3.8 Photonic band gap materials 1 1 3.9 Organic materials 1 1 4 NANO STRUCTURE DEVICES 1 1<	2.1	Photons and Electrons	1
2.3 Confinement of Photons and Electrons 1 2.4 Nanoscale Optical Interactions 1 2.5 Axial Nanoscopic Localization - Lateral Nanoscopic Localization 1 2.6 Nanoscopic Localization 1 2.6 Nanoscopic Interaction Dynamics 1 2.7 Nanoscopic Interaction Dynamics 1 2.8 New Cooperative Transitions 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 2.9 Cooperative Emission 1 3 PROPERTIES OF NANOPHOTONIC MATERIALS 1 3.1 Photonic Crystals 1 3.3 Nanocomposite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.6 Nanostructured Multiphasic Composities 1 3.7 Nanostructured Multiphasic Composities 1 3.8 Photonic band gap materials 1 1 3.9 Organic materials 1 1 4 NANO STRUCTURE DEVICES 1 1 4.1 Near-Field Bioimaging 1 1 4.2	2.2	•	1
2.5 Axial Nanoscopic Localization 1 2.6 Nanoscale Confinement of Electronic Interactions 1 2.7 Nanoscopic Interaction Dynamics 1 2.8 New Cooperative Transitions 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 3 PROPERTIES OF NANOPHOTONIC MATERIALS 1 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.3 Nanoscructured Multiphasic Composite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.6 Nanostructured Multiphasic Composites 1 3.7 Properties 1 3.8 Photonic band gap materials 1 3.9 Organic materials 1 4 NANO STRUCTURE DEVICES 1 4.1 Near-Field Bioimaging 1 4.2 Nanoparticles for Optical Diagnostics 1 4.3 Nanoparticles for Optical Diagnostics 1 4.4 Bio imaging 1 1 4.5 Semiconductor Quantum Dots for Bio imaging 1	2.3		1
2.5 Axial Nanoscopic Localization 1 2.6 Nanoscale Confinement of Electronic Interactions 1 2.7 Nanoscopic Interaction Dynamics 1 2.7 Nanoscopic Interaction Dynamics 1 2.8 New Cooperative Transitions 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 3 PROPERTIES OF NANOPHOTONIC MATERIALS 1 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.3 Nanocomposite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.5 Rare-earth-doped glasses 1 3.6 Nanostructured Multiphasic Composites 1 3.7 properties 1 3.8 Photonic band gap materials 1 3.9 Organic materials 1 4.1 Near-Field Bioimaging 1 4.2 Nanoparticles for Optical Diagnostics 1 4.3 Nanoparticles for Optical Diagnostics 1 4.4 Bio imaging 1 1 4.5	2.4	Nanoscale Optical Interactions	1
2.6 Nanoscale Confinement of Electronic Interactions 1 2.7 Nanoscopic Interaction Dynamics 1 2.8 New Cooperative Transitions 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 3 PROPERTIES OF NANOPHOTONIC MATERIALS 1 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.3 Nanocomposite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.5 Rare-earth-doped glasses 1 3.6 Nanostructured Multiphasic Composities 1 3.7 Properties 1 3.8 Photonic band gap materials 1 3.9 Organic materials 1 4.1 Near-Field Bioimaging 1 4.2 Nanoparticles for Optical Diagnostics 1 4.3 Nanoparticles for Targeted Therapy 1 4.4 Bio imaging 1 4.5 Semiconductor Quantum Dots for Bio imaging 1 4.6 Biosensing - Photonic Crystal Biosensors 1 4.7	2.5	Axial Nanoscopic Localization - Lateral	1
2.8 New Cooperative Transitions 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 3 PROPERTIES OF NANOPHOTONIC MATERIALS 1 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.3 Nanocomposite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.5 Rare-earth-doped glasses 1 3.6 Nanostructured Multiphasic Composities 1 3.7 Nanostructured Multiphasic Composities 1 3.8 Photonic band gap materials 1 3.9 Organic materials 1 4.1 Near-Field Bioimaging 1 4.2 Nanoparticles for Targeted Therapy 1 4.3 Nanoparticles for Targeted Therapy 1 4.4 Bio imaging 1 4.5 Semiconductor Quantum Dots for Bio imaging 1 4.6 Biosensing - Photonic Crystal Biosensors 1 4.7 Optical Nanofiber Sensors 1 4.8 Nanoclinics for Optical Diagnostics 1 4.9	2.6	_	1
2.8 New Cooperative Transitions 1 2.9 Nanoscale Electronic Energy Transfer, Cooperative Emission 1 3 PROPERTIES OF NANOPHOTONIC MATERIALS 1 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.4 Metamaterials Structures - Nanocomposite 1 3.5 Rare-earth-doped glasses 1 3.6 Nanostructured Multiphasic Composites 1 3.7 Nanostructured Multiphasic Composites 1 3.8 Photonic band gap materials 1 3.9 Organic materials 1 4 NANO STRUCTURE DEVICES 1 4.1 Near-Field Bioimaging 1 4.2 Nanoparticles for Optical Diagnostics 1 4.3 Nanoparticles for Targeted Therapy 1 4.4 Bio imaging 1 4.5 Semiconductor Quantum Dots for Bio imaging 1 4.6 Biosensing - Photonic Crystal Biosensors 1 4.7 Optical Nanofiber Sensors 1 4.8 Nanoclinics for Optical Diagnostics 1	2.7	Nanoscopic Interaction Dynamics	1
2.9 Cooperative Emission 1 3 PROPERTIES OF NANOPHOTONIC MATERIALS 1 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.3 Nanocomposite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.5 Rare-earth-doped glasses 1 3.6 Nanostructured Multiphasic Composities 1 3.7 properties 1 3.8 Photonic band gap materials 1 3.9 Organic materials 1 4 NANO STRUCTURE DEVICES 1 4.1 Near-Field Bioimaging 1 4.2 Nanoparticles for Optical Diagnostics 1 4.3 Nanoparticles for Targeted Therapy 1 4.4 Bio imaging 1 4.5 Semiconductor Quantum Dots for Bio imaging 1 4.6 Biosensing - Photonic Crystal Biosensors 1 4.7 Optical Nanofiber Sensors 1 4.8 Nanoclinics for Optical Diagnostics 1 4.9 Targeted Therapy 1 <	2.8		1
3 MATERIALS 3.1 Photonic Crystals 1 3.2 Fibers-Plasmonics 1 3.3 Nanocomposite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.5 Rare-earth-doped glasses 1 3.6 Nanostructured Multiphasic Composites 1 3.7 Nanostructured Multiphasic Composites 1 3.8 Photonic band gap materials 1 3.9 Organic materials 1 4 NANO STRUCTURE DEVICES 1 4.1 Near-Field Bioimaging 1 4.2 Nanoparticles for Optical Diagnostics 1 4.3 Nanoparticles for Targeted Therapy 1 4.4 Bio imaging 1 4.5 Semiconductor Quantum Dots for Bio imaging 1 4.6 Biosensing - Photonic Crystal Biosensors 1 4.7 Optical Nanofiber Sensors 1 4.8 Nanoclinics for Optical Diagnostics 1 4.9 Targeted Therapy 1 5.1 Quantum-Confined Lasers 2 5	2.9	Nanoscale Electronic Energy Transfer, Cooperative Emission	1
3.2 Fibers-Plasmonics 1 3.3 Nanocomposite 1 3.4 Metamaterials Structures - Nanocomposite 1 3.5 Rare-earth-doped glasses 1 3.6 Nanostructured Multiphasic Composites 1 3.7 Nanostructured Multiphasic Composites 1 3.7 Nanostructured Multiphasic Composites 1 3.8 Photonic band gap materials 1 3.8 Photonic band gap materials 1 3.9 Organic materials 1 4 NANO STRUCTURE DEVICES 1 4.1 Near-Field Bioimaging 1 4.2 Nanoparticles for Optical Diagnostics 1 4.3 Nanoparticles for Targeted Therapy 1 4.4 Bio imaging 1 4.5 Semiconductor Quantum Dots for Bio imaging 1 4.6 Biosensing - Photonic Crystal Biosensors 1 4.7 Optical Nanofiber Sensors 1 4.8 Nanoclinics for Optical Diagnostics 1 4.9 Targeted Therapy 1 5.1 Quantum-Confined La	3		
3.3Nanocomposite13.4Metamaterials Structures - Nanocomposite13.5Rare-earth-doped glasses13.6Nanostructured Multiphasic Compostites13.7Nanostructured Multiphasic Compostites13.7Nanostructured Multiphasic Compostites13.8Photonic band gap materials13.9Organic materials14NANO STRUCTURE DEVICES4.1Near-Field Bioimaging14.2Nanoparticles for Optical Diagnostics14.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.7Lightingand chip-to-chip interconnects2			1
3.4Metamaterials Structures - Nanocomposite13.5Rare-earth-doped glasses13.6Nanostructured Multiphasic Composites13.7Nanostructured Multiphasic Composites13.7Nanostructured Multiphasic Composites13.8Photonic band gap materials13.9Organic materials14NANO STRUCTURE DEVICES4.1Near-Field Bioimaging14.2Nanoparticles for Optical Diagnostics14.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.7Lightingand chip-to-chip interconnects2	3.2	Fibers-Plasmonics	1
3.5Rare-earth-doped glasses13.6Nanostructured Multiphasic Composites13.7Nanostructured Multiphasic Composites13.8Photonic band gap materials13.8Photonic band gap materials14NANO STRUCTURE DEVICES14.1Near-Field Bioimaging14.2Nanoparticles for Optical Diagnostics14.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	3.3	Nanocomposite	1
3.6Nanostructured Multiphasic Composities13.7Nanostructured Multiphasic Composites properties13.8Photonic band gap materials13.9Organic materials14NANO STRUCTURE DEVICES4.1Near-Field Bioimaging14.2Nanoparticles for Optical Diagnostics14.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	3.4	Metamaterials Structures - Nanocomposite	1
3.7Nanostructured Multiphasic Composites properties13.8Photonic band gap materials13.9Organic materials14NANO STRUCTURE DEVICES4.1Near-Field Bioimaging14.2Nanoparticles for Optical Diagnostics14.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	3.5	Rare-earth-doped glasses	1
3.7properties13.8Photonic band gap materials13.9Organic materials14NANO STRUCTURE DEVICES4.1Near-Field Bioimaging14.2Nanoparticles for Optical Diagnostics14.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	3.6	Nanostructured Multiphasic Compostites	1
3.9Organic materials14NANO STRUCTURE DEVICES4.1Near-Field Bioimaging14.2Nanoparticles for Optical Diagnostics14.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	3.7	· · · ·	1
4NANO STRUCTURE DEVICES4.1Near-Field Bioimaging14.2Nanoparticles for Optical Diagnostics14.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	3.8	Photonic band gap materials	1
4.1Near-Field Bioimaging14.2Nanoparticles for Optical Diagnostics14.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	3.9	Organic materials	1
4.2Nanoparticles for Optical Diagnostics14.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	4	NANO STRUCTURE DEVICES	
4.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	4.1	Near-Field Bioimaging	1
4.3Nanoparticles for Targeted Therapy14.4Bio imaging14.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	4.2	Nanoparticles for Optical Diagnostics	1
4.5Semiconductor Quantum Dots for Bio imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION55.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	4.3		1
4.5imaging14.6Biosensing - Photonic Crystal Biosensors14.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION55.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	4.4	Bio imaging	1
4.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	4.5		1
4.7Optical Nanofiber Sensors14.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	4.6	Biosensing - Photonic Crystal Biosensors	1
4.8Nanoclinics for Optical Diagnostics14.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	4.7		1
4.9Targeted Therapy15APPLICATION15.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2			1
5.1Quantum-Confined Lasers25.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	4.9		1
5.2Optical switching15.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	5	APPLICATION	
5.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	5.1	Quantum-Confined Lasers	2
5.3Organic Light Emitting Diodes (OLEDs)15.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2	5.2	Optical switching	1
5.4Small molecule (SMOLED)15.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2			1
5.5Polymeric (PLED)15.6Display technology25.7Lightingand chip-to-chip interconnects2			1
5.6Display technology25.7Lightingand chip-to-chip interconnects2			1
5.7 Lightingand chip-to-chip interconnects 2			2
			45

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

60 DNT 202	Nanolithography and	Category	L	Т	Р	Credit
60 PNT 203	Nanofabrication	РС	3	0	0	3

Г

Objective

- To knowledge about lithography
- To know about etching method
- To analyze the process of lithography technique
- To discuss the printing and soft stamping
- To apply the lithography in nanoscale

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the emerging ideas of lithography	Remember
CO2	To classify the lithography types	Apply
CO3	Describe the nanolithography techniques	Analyze
CO4	To analyze process of lithography technique	Apply
CO5	Identify the advantage of lithography application	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern

Bloom's Catagony	Continuous Assessi	End Sem Examination		
Bloom's Category	1	2	(Marks)	
Remember	10	10	10	
Understand	10	10	10	
Apply	10	10	30	
Analyze	10	10	30	
Evaluate	10	10	10	
Create	10	10	10	

M.Tech.(NST) - Degree Programme 2022-2023

		K.S.Ra	angasam	y College of	Technology	- Autonom	ous Regula	tion		
					thography ar					
			-		anoscience a	-				
Semes	tor	H	ours/Wee	ek	Total hrs.	Credit	Ма	aximum Marl	ks	
Jemes		L	Т	Р	rotarms.	С	С	E	Total	
II		3	0	0	45	3	40	60	100	
		graphy	D							
					ography –Pre				101	
-	•		•		ing - Etching			-	[9]	
	•				ern process-	Litnograph	y in artistic	meaium –		
		sign for ele	ctronic ci	rcuits.						
	l lithogi		abt couro	oc Dhoto i	mask and ali	anmont D	Pocolution in	projection		
•	-				itical Projectio	-			101	
-					/- X ray Litho		-		[9]	
-				ic lithography	•	giapity - Fi	ioxinity prin	ung - A Tay		
		onbeam li	• •	• • •	у.					
					int sources of	ion – Ion co	olumn – Bea	m writing –		
	-	• • •			hography - Ele			-	[9]	
		-			oximity / Proje	-			[9]	
				ectron beam	• •					
		nd Soft li			approation					
					ocess - Types	- Benefits-A	Applications	-Future of		
	•			-	s - Molding-P		• •		[9]	
				-) shapes – NE	-		-	[-]	
-		terials - A			·	Ũ	•	0 1 5		
		hy tools	•							
			/ - Molecu	ular manipula	tion by STM a	and AFM –	Nano patter	n synthesis	[9]	
– Nano	scratch	ing – Resi	st and im	aging layers.						
							Т	otal Hours	45	
Refere	nce(s):									
V	V.R.Fah	rner, "Nan	otechnolo	ogy and Nand	pelectronics –	Materials, I	Devices, Me	asurement		
	echniqu									
	Springer									
2		Bucknall,"	Nanolitho	graphy and F	Patterning tech	nniques in n	nicroelectror	nics", CRC Pr	ess,	
2 1	005.			0 1 9	0	•		·		
	ames R	. Sheats, I	Bruce W.	Smith, "Micro	olithography: S	Sciences an	d Technolog	gy", CRC Pre	ss, 1998	
Ν	ames R	. Sheats, I	Bruce W.	Smith, "Micro	0	Sciences an	d Technolog	gy", CRC Pre	ss, 1998	

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	BASICS IN LITHOGRAPHY	
1.1	Principle of Lithographic Process	1
1.2	Mask for Lithography	1
1.3	Preparation - Photoresist - Positive and	1
1.5	negative photo resists	1
1.4	Exposure and Developing	1
1.5	Etching - Photoresist Removal	1
1.6	Printing - Chemical process	1
1.7	Refinements - The modern process	1

	Total	45
5.6	Resist and imaging layers.	2
5.5	Nano scratching	2
5.4	Nano pattern synthesis	2
5.3	Molecular manipulation by OFM	1
5.2	Molecular manipulation by STM	1
<u> </u>	Tools for nanolithography	1
4.9 5	Applications. NANOLITHOGRAPHY TOOLS	
4.0	Dip-Pen Lithography - Principle - Materials -	1
<u>4.7</u> 4.8	NEMS design	1
4.6	Edge Lithography - Stereo - lithography Nanoscale 3D shapes	1
4.5	Molding-Printing with Soft Stamps	1
4.4	UV-Soft Lithography – Advantages	1
4.3	Benefits-Applications - Future of Nanoimprint	1
4.2	Hot Embossing - Process - Types	1
4.1	Nanoimprint Lithography	1
4	NANOIMPRINT AND SOFT LITHOGRAPHY	1
3.9	Electron beam applications	1
3.8	Photon based Nanolithography	1
3.7	Electron resists	1
3.6	Electron proximity / Projection printing	1
3.5	Electron optics – Raster scan and vector scan	1
3.4	lon projection lithography - Electron lithography	1
3.3	Beam writing – Masked ion beam lithography	1
3.2	Point sources of ion – Ion column	1
3.1	Ion beam lithography - Focused ion beam	1
3	ION AND ELECTRONBEAM LITHOGRAPHY	
2.9	Holographic lithography	1
2.8	sources	1
2.7	Lithography Proximity printing - X ray masks – X ray	1
	Extreme Ultraviolet Lithography Optical Interferometric Lithography - X ray	•
2.5	Mask less Optical Projection Lithography -	1
2.4	Resolution in projection systems Ultraviolet lithography	1
2.3	Photo mask and alignment	1
2.2	Light sources	1
2.1	Optical lithography	1
2 2.1	OPTICAL LITHOGRAPHY	1
1.9	Nanometer design for electronic circuits.	1
1.8	Lithography in artistic medium	1

Course Designer

Dr. S.Satheeskumar (satheeskumars@ksrct.ac.in)

60 DNT 204	Advanced Carbon Nanotubes		Category	L	т	Р	Credit
60 PNT 204	and Applications	bes	PC	3	0	0	3

- To understand the different formation of CNT.
- To learn the various synthesis methods and fabrication technology
- To study the structural and electronic characteristics of CNT
- To acquire knowledge of CNT functionalization mechanism.
- To gain the knowledge of CNT through spectroscopy characterize tools and its applications

Prerequisite

Basics of Carbon Nanotubes

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe Nano diamond particles and diamond like carbon films	Remember
CO2	Analyze the properties of carbon nanotubes	Analyze
CO3	Illustrate the synthesis of carbon nanotubes	Analyze
CO4	Explain the applications of carbon Nanotubes	Apply
CO5	Demonstrate the various applications of Carbon Nanotubes	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern

Diagmia Cotomony	Continuous Ass	End Sem Examination						
Bloom's Category	1 2		(Marks)					
Remember	10	10	10					
Understand	10	10	10					
Apply	10	10	20					
Analyze	10	10	30					
Evaluate	10	10	20					
Create	10	10	10					

M.Tech.(NST) - Degree Programme 2022-2023

	K.S.F	Rangasamy	College of	Technology	- Autonom	ous Regula	tion	
	60	PNT 204 -	Advanced	Carbon Nanc	tubes and	Application	IS	
		Depa	rtment of N	anoscience a	and Techno	logy		
Semester Hours/Week Total hrs Credit Maximum Ma								S
Semesu	L	Т	Р	P C C E		Total		
II	3	0	0	45	3	40	60	100
CARBO		S PROPER	TIES					
Carbon r	nanotube (CNT), structure o	of CNT, synt	hesis of CNT,	electronic,	vibrational, r	nechanical	[9]
and option	cal properties o	f CNT; appli	ications of C	NT. fabricatio	n of Fullerer	ne (C60).		
CARBO	N NANOFILMS							
	I-like Carbon fi	. ,		•	•			
	stress and a		•		•			[9]
•	phite transform						properties,	
chemica	l resistance, trit	ological pro	operties; dep	osition techni	ques of DLC) films.		
CNT FU	NCTIONALIZA	TION						
	alization of Ca							[9]
	lization of CNT					ctions, elect	rochemical	[0]
	on, electroless o			ation of CNTs				
-	DRSCOPIC PR		-					
•	copic Propert							[9]
	lanotubes, Ab				by of Carb	on Nanotuk	bes, ESR-	[0]
	copic Propertie	s of Carbor	Nanotubes					
	PLICATIONS		_					
	& Hydrogen ads	•	•	••		0, 0	-	[9]
Sensors	applications		•	er applicatio		chip), op	otical and	
telecomr	nunication appl	ications. Na	ino composi	tes, silicon Na	inowires			45
Taut Da	-1-(-)						otal Hours	45
Text Bo	· /		a and Any P	4i				040
	arbon Nanotube							.012.
	anotubes and N	anowires-C	INK Kao and	a Govindara	J RCS Publi	sning, 2013.		
Referen	· /	IL #O I		Duranti			Des	
3 Mi	chael J. O'Con	nell, "Carbo	n Nanotubes	s: Properties a	and Applicat	ions," CRC I	Press., 2010.	

Course Contents and Lecture Schedule

S.No	Торіс	No. of Hours
1	CARBON NANOTUBES PROPERTIES	110013
1.1	Carbon nanotube (CNT)	1
1.2	Structure of CNT	1
1.3	Synthesis of CNT	1
1.4	Electronic properties	1
1.5	Vibrational properties	1
1.6	Mechanical properties of CNT	1
1.7	Optical properties of CNT	1
1.8	Applications of CNT	1
1.9	Fabrication of Fullerene (C60).	1
2	CARBON NANOFILMS	
2.1	Diamond-like Carbon films (DLC)	1
2.2	Classification of DLC	1
2.3	Properties of DLCs	1
2.4	Applications of DLCs	1

	M.Tech.(NST) - Degree Programme 2022-2023	
2.5	Internal stress and adhesion, coating morphology,	1
2.5	porosity and diffusional property	I
2.6	DLC/graphite transformation	1
2.7	Optical properties, electrical properties, mechanical	1
2.1	properties, chemical resistance	-
2.8	Tribological properties; deposition techniques of DLC	1
	films.	•
2.9	Deposition techniques of DLC films.	1
3	CNT FUNCTIONALIZATION	
3.1	Functionalization of Carbon Nanotubes	1
3.2	Covalent functionalization of CNTs	2
3.3	Non covalent functionalization of CNTs	2
3.4	modification of CNTs via mechnochemical reactions	1
3.5	Electrochemical deposition	1
3.6	Electroless deposition	1
3.7	Plasma activation of CNTs	1
4	SPECTORSCOPIC PROPERTIES OF CNT	
4.1	Spectroscopic Properties of Carbon Nanotubes	1
4.2	Raman Spectroscopy of Carbon Nanotubes	2
4.3	Infrared Spectroscopy of Carbon Nanotubes	1
4.4	Absorption Spectroscopy of Carbon Nanotubes	1
4.5	Emission Spectroscopy of Carbon Nanotubes	2
4.6	ESR-Spectroscopic Properties of Carbon Nanotubes	2
5	CNT APPLICATIONS	
5.1	Lithium & Hydrogen Battery	1
5.2	Lithium & Hydrogen adsorption & storages	1
5.3	Fuel cell applications	1
5.4	Energy storage	1
5.5	Chemical Sensors applications of CNTs	1
5.6	Computer applications (Nano chip)	1
5.7	Optical and telecommunication applications	1
5.8	Nano composites	1
5.9	Silicon Nanowires	1
0.0		
	Total	45

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

M.Tech.(NST) - Degree Programme 2022-2023							
60 PED 001		Category	L	Т	Ρ	Credit	
	Research Methodology and IPR	PC	3	0	0	3	
L						1	

Objective(s)

- To understand the principles of research process.
- To develop knowledge in analytical skills for collection of research data.
- To understand the procedure in the preparation of reports.
- To accomplish basic idea about the process involved in intellectual property rights.
- To enlighten the process of patent filing.

Pre-requisite

Nil

Course Outcomes

On the successful completion of the course, students will be able

CO1	To understand the research process and design.	Remember, Understand, Apply
CO2	To gain the knowledge about sources and collection of research data	Remember, Understand, Aanalyze
CO3	To understand the procedure of data analysis, preparation of reports and checking plagiarism	Remember, Understand, Analyze
CO4	To gain the knowledge on Trade mark and functions of UNESCO in IPR	Remember, Understand, Apply
CO5	To enlighten the benefits, E-filing and Examinations related to patents	Remember, Understand, Apply

Mapping with Programme Outcomes

COURSE NAME	со	PO					PSO			
	co	1	2	3	4	5	6	1	2	3
	CO1	3	3	2	2	2	2	3	1	3
Research	CO2	3	3	2	2	2	2	3	1	3
Methodology and	CO3	3	3	2	2	2	2	3	1	3
IPR	CO4	3	3	2	2	2	2	3	1	3
	CO5	3	3	2	2	2	2	3	1	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

AssessmentPattern				
Bloom'sCategory	Continuous Ass (Mar		Model	End Semester Examination (Marks)
	1	2	Exam (Marks)	
Remember	10	10	20	30
Understand	20	20	40	30
Apply	30	30	40	30
Analyse	0	0	0	10
Evaluate	0	0	0	0
Create	0	0	0	0

Syllabus

		K.S.Ran	qasamy C	ollege of Tech	nology – A	utonomou	s R2022			
			ED 001 - R	esearch Metho	odology and					
Common to all Branches										
Semester		Hours	Hours/Week Credit Maximum Mark T P C CA ES T							
	<u> </u>	0	0 0	45	3	40	<u>ES</u> 60	<u>Total</u> 100		
Research D		0	0	45	3	40	00	100		
Overview of research process and design- Use of Secondary and exploratory data to answer the research question, Qualitative research, Observation studies, Experiments and Surveys, Selection of the Right Medium and Journal for publication, Translation of Research										
Data - Prepa	nts, Measu aring, Explo	irement Sc pring, exam			Instruments	s, Sampling	g and methods.	[9]		
	Multivaria d findings	te Analysis using wri	tten repor	ts and oral p			tion. Presenting for Plagiarism,			
developmen IPR establis	Property – t process, hments, Ri	The conce Trade secre ght of Prope	ets, utility N erty, Comm	lodels, IPR & B	io diversity, R practices,	Role of WI	ept of IPR, IPR PO and WTO in Features of IPR	[9]		
Specification	n, Types of Equitable	patent app Assignme	lication, pro	ocess E-filling, I	Examination	of patent,	Inventive step, Grant of patent, patent agents,	[9]		
-		5					Total Hours	45		
Text Book(s		, "Intellectu	al Property	r", Longman, 9tl	h Edition, 20)12.				
	Donald R,		^p amela S a	and Sharma JK	, "Business	Research	Methods", Tata	McGraw		
Reference(s	s):									
1. Chawla	H S., "Intro	duction to I	ntellectual	Property Rights	a", CBS PUB	& DIST P\	/T Limited, INDI	A, 2019.		
	e J. Holl		lectual pro	operty: Patents	s, Tradema	rks, Copyi	rights, Trade S	Secrets",		
3. David H	unt, Long N	Nguyen, Ma	itthew Rod	gers, "Patent se	earching: too	ols & techni	ques", Wiley, 20	07		
^{4.} Universi	ty Press, 2	010.					and Practice"			
5. Richard Publishe	Stim, "Pa ers, 2020.	tent, Copyr	0				esk Reference'			
				India, Statutory Law and practic			parliament, "Prot	essiona		

M.Tech.(NST) - Degree Programme 2022-2023 Course Content and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Research Design	
1.1	Overview of research process and design	1
1.2	Use of Secondary and exploratory data to answer the research question	2
1.3	Qualitative research	1
1.4	Observation studies	1
1.5	Experiments and Surveys	1
1.6	Selection of the Right Medium and Journal for publication	2
1.7	Translation of Research	1
2.0	Data Collection and Sources	
2.1	Measurements, Measurement Scales	2
2.2	Questionnaires and Instruments	2
2.3	Sampling and methods	2
2.4	Data - Preparing, Exploring, examining and displaying	3
3.0	Data Analysis and Reporting	
3.1	Overview of Multivariate analysis	1
3.2	Hypotheses testing and Measures of Association	2
3.3	Presenting Insights	1
3.4	Findings using written reports and oral presentation	2
3.5	Checks for Plagiarism	1
3.6	Falsification	1
3.7	Fabrication, and Misrepresentation	1
4.0	Intellectual Property Rights	
4.1	Intellectual Property – The concept of IPR	1
4.2	Evolution and development of concept of IPR, IPR development process	2
4.3	Trade secrets, utility Models, IPR & Bio diversity	2
4.4	Role of WIPO and WTO in IPR establishments	1
4.5	Right of Property, Common rules of IPR practices	1
4.6	Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance	2
5.0	Patents	
5.1	Patents – objectives and benefits of patent, Concept, features of patent	2
5.2	Inventive step, Specification, Types of patent application	2
5.3	Process E-filling, Examination of patent	1
5.4	Grant of patent, Revocation	1
5.5	Equitable Assignments, Licences, Licensing of related patents	2
5.6	Patent agents, Registration of patent agents	1

CourseDesigner

Dr.A.Murugesan – <u>murugesana@ksrct.ac.in</u>

M.Tech.(NST) - Degree Programme 2022-2023	3

		Category	L	Т	Ρ	Credit
60 PAC 002	Disaster Management	AC	2	0	0	0

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches Teach how to improve writing skills and level of readability

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Ability to summarize basics of disaster
CO2	Ability to explain a critical understanding of key concepts in disaster risk reduction and
	humanitarian response.
CO3	Ability to illustrate disaster risk reduction and humanitarian response policy and practice
	from multiple perspectives.
CO4	Ability to describe an understanding of standards of humanitarian response and practical
	relevance in specific types of disasters and conflict situations.
CO5	Ability to develop the strengths and weaknesses of disaster management approaches

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	1
CO2	1	1	1	1	1	1
CO3	1	1	1	1	1	1
CO4	1	1	1	1	1	1
CO5	1	1	1	1	1	1

Assessment Pattern

Bloom's Category	Continuous Assessment Tests(Marks)				
Bloom's Category	1	2			
Remember	20	20			
Understand	20	20			
Apply	30	30			
Analyse	30	30			
Evaluate	0	0			
Create	0	0			

					02 – Disaste		–Autonomous ient			
					mmon to all E					
Seme	osto	Hours/Week		/Week	Total hrs.	Credit		Maximum	n Mark	S
r	5316	L	Т	Р		С	CA	E		Tota
-		2	0	0	3	0	100	-	100	
Disa		Definition,			nce; Difference Types and Maç		azard and Disa	aster; Natura	al and	[6]
Ecor Eart Aval	nomic hqual lanch	: Damage kes, Volca es, Man-n	anisms, Cy nade disas	uman and clones, Tsi ter: Nuclea	Animal Life, D unamis, Floods	s, Droughts tdown, Indu	f Ecosystem. N And Famines strial Accident	, Landslide	s And	[6]
Stud Pror	y of	Seismic Zo Cyclonic a		s Prone to			ndslides and Av sunami; Post-E			
Prep Appl	bared licatio	ness: Mor n of Rem	note Sensir	Phenomen	a Triggering a		or Hazard; Ev			[6]
		ental and	Community	Preparedr		gical and o	ther Agencies,	Media Re	eports:	[o]
Disa Situa	ister I ation.	essment Risk: Cono Techniqu	cept and El	Preparedr ements, Di Assessmer	saster Risk Re	eduction, Gl	ther Agencies, obal and Natio Risk Assessmo	nal Disaste	r Risk	
Disa Situa	ister I ation.	essment Risk: Cono Techniqu	cept and El	Preparedr ements, Di Assessmer	ness. saster Risk Re ht, Global Co-C	eduction, Gl	obal and Natio	nal Disaste	r Risk arning,	[6]
Disa Situa Peoj	ister I ation.	essment Risk: Cono Techniqu Participatio	cept and El	Preparedr ements, Di Assessmer	ness. saster Risk Re ht, Global Co-C	eduction, Gl	obal and Natio	nal Disaste ent and Wa	r Risk arning,	[6]
Disa Situa Peop Text	aster I ation. ple's t Boo Goel	essment Risk: Cond Techniqu Participatio k(s): S. L., Disa	cept and El es of Risk / on in Risk / aster Admin	Preparedr ements, Di Assessmer Assessmen istration ar	ness. saster Risk Re nt, Global Co-C t. Strategies fo nd Managemer	eduction, Gl Operation in r Survival.	obal and Natio	nal Disaste ent and Wa Total F	r Risk arning, lours	[6]
Disa Situa Peop Text 1.	aster I ation. ple's t Boo Goel Public Nishit	essment Risk: Cond Techniqu Participatio k(s): S. L., Disa cation Pvt. ha Rai, Si	cept and El es of Risk / on in Risk / aster Admin Ltd., New	Preparedr ements, Di Assessmen Assessmen istration ar Delhi,2009 isaster Ma	ness. saster Risk Re nt, Global Co-C t. Strategies fo nd Managemer	eduction, Glo Operation in r Survival.	obal and Natio Risk Assessm	nal Disaste ent and Wa Total H Deep & De	r Risk arning, Iours eep	[6] 30
Disa Situa Peop Text 1.	aster I ation. ple's t Boo Goel Public Nishit	essment Risk: Cond Techniqu Participatio k(s): S. L., Disa cation Pvt. ha Rai, Si I book Cor	cept and El es of Risk / on in Risk / aster Admin Ltd., New ngh AK, "D	Preparedr ements, Di Assessmen Assessmen istration ar Delhi,2009 isaster Ma	ness. saster Risk Re nt, Global Co-C t. Strategies fo nd Managemer	eduction, Glo Operation in r Survival.	obal and Natio Risk Assessme Case Studies",	nal Disaste ent and Wa Total H Deep & De	r Risk arning, Iours eep	[6] 30
Disa Situa Peop Text 1. 2 Refe	aster I ation. ple's t Boo Goel Public Nishit Roya erenc	essment Risk: Conc Techniqu Participatio k(s): S. L., Disa cation Pvt. ha Rai, Si I book Cor e(s): i, Pardeep	cept and El es of Risk / on in Risk / aster Admin Ltd., New ngh AK, "D mpany,2007	Preparedr ements, Di Assessmen Assessmen istration ar Delhi,2009 isaster Mai 7.	ness. saster Risk Re nt, Global Co-C t. Strategies fo nd Managemer nagement in In	eduction, Glo Operation in r Survival. It Text And (dia: Perspe	obal and Natio Risk Assessme Case Studies",	nal Disaste ent and Wa Total H Deep & De	r Risk arning, Iours eep es "'Ne	[6] 30
Disa Situa Peop Text 1. 2 Refe	aster I ation. ple's Goel Public Nishit Roya erenc Sahn 2001.	essment Risk: Cond Techniqu Participatio k(s): S. L., Disa cation Pvt. tha Rai, Si I book Cor e(s): i, Pardeep	cept and El es of Risk / on in Risk / aster Admin Ltd., New ngh AK, "D mpany,200 et.al.," Dis	Preparedr ements, Di Assessmen Assessmen istration ar Delhi,2009 isaster Mar 7.	ation Experience	eduction, Glo Operation in r Survival. It Text And (dia: Perspe ces and Ref	obal and Natio Risk Assessme Case Studies", ctives, issues a	nal Disaste ent and Wa Total F Deep & De and strategic	r Risk arning, Iours eep es "'Ne	[6] 30
Disa Situa Peop Text 1. 2 Refe 1.	t Boo Goel Public Nishit Roya Sahn 2001 Subra Chu-h	essment Risk: Conc Techniqu Participatio Receipation (K(s): S. L., Disa cation Pvt. Cation Pvt. Cation Pvt. Conc (S): i, Pardeep amanian R nuaKuei, C	cept and El es of Risk / on in Risk / aster Admin Ltd., New ngh AK, "D mpany,200 et.al.," Dis christian N	Preparedr ements, Di Assessmen istration ar Delhi,2009 isaster Mar 7. aster Mitiga Manageme Madu, Han	ness. saster Risk Re nt, Global Co-C t. Strategies fo nd Managemer nagement in In ation Experience nt", Vikas publ	eduction, Glo Operation in r Survival. It Text And (dia: Perspe ces and Ref ishing Hous ster Manage	obal and Natio Risk Assessmo Case Studies", ctives, issues a lections", Prent ing Pvt. Ltd., 20 ment Risk Rec	nal Disaste ent and Wa Total H Deep & De and strategio tice Hall of I	r Risk arning, Iours eep es "'Ne	[6] 30

60 PNT 2P1	Advanced Characterisation	Category	L	т	Ρ	Credit
60 PNT 2PT	Laboratory	PC	0	0	4	2

- To practice characterization tools and nanomaterials.
- To gain knowledge of working mechanism of instruments
- To learn data interpretation knowledge acquired from Instruments
- To facilitate the hands training experience
- To understand the chemical, physical behavior of Macro to nanoscale materials through comprehensive tools

Prerequisite

Nil.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recognize requirement of various characterization tools and nanomaterials.	Remember
CO2	Practice the structural characterization of nanomaterials.	Analyse
CO3	Evaluate the band-gap energy of semiconductor nanoparticles.	Apply
CO4	Analysis the dielectric and electro-chemical properties of nanomaterials	Apply
CO5	Demonstrate various application of nanomaterials by exploring materials properties	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	2	2	3
CO2	2	3	2	2	3	2
CO3	2	1	2	3	2	1
CO4	3	2	1	2	2	3
CO5	2	2	1	3	2	2

Assessment Pattern

Plaam'a Catagony	Continuous Assessm	ent Tests (Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember	0	0	0
Understand	0	0	10
Apply	20	20	30
Analyze	20	20	30
Evaluate	10	10	20
Create	10	10	20

			60 PNT 2P	1 - Advano	ced Characte	risation Lab	oratory		
			Depar	tment of Na	anoscience a	nd Technol	ogy		
64	mester		Hours / Wee	ek	Total hrs.	Credit	Ма	aximum Ma	rks
36	mester	L	Т	Р	l otal nrs.	С	CA	ES	Total
	I	0	0	4	60	2	60	40	100
	 Structu Charac Determ Electric Charac Charac Particle Particle Determ Determ Hands 	ral charact terization of ination of t cal characte terization of size deter ination of s ine the we	erization of r of nano meta pand-gap en- erization of n of nanomater mination usi specific surfa ttability of po	hanomateria I oxide usin ergy using l anomateria rials by elec ng dynamic ice area usi ilymeric mat	roughness by Is using X-ray g photolumine JV-Vis (UV)sp Is using four-p trochemical In light scatterin ng nitrogen ph terials through Origin softwar	/ diffraction (2 escence (PL) pectroscopy probe techniq npedance sp ng (DLS)mea nysisorption r n contact ang	XRD)analys spectroscop ectroscopy surements measuremel	is by (EIS) nts	
_ab I	lanual :	<u></u>							
1		Characteri	sation Labor	atory - II Ma	anual", Depart	ment of NST	, KSRCT 20)22.	
Refe	ence(s) :								
1			harles A. Ev Inn Publishe		Shaun Wilsor	n., "Encyclop	edia of Mate	erials Charac	terizatior
		Condon., "S Isevier, 20		and Poros	ity Determinat	ions by Phys	isorption-M	easurements	s and
2	Ineory, E	100 101, 20	00.						

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

60 PNT 2P2	Nanomaterials Device Fabrication	Category	L	т	Ρ	Credit	
OU FINT 2F2	and Analysis Laboratory	PC	0	0	4	2	

- To understand the basics of nanoscale coating on various metallic specimen.
- To acquire knowledge about thin film instruments hands on training.
- To analyze and result interpretation of various nanoscale materials and devices.
- To learn device fabrication and construction assembling process.
- To estimate various properties of nanoscale materials for energy harvesting and anticorrosion applications.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Benefit out the hands-on training experience in thin film technology.	Remember
CO2	Establish large scale engineering on nanoscale coating.	Analyse
CO3	Characteristize the materials scaling up properties through different instruments	Apply
CO4	Estimate corrosion resistance of organic/inorganic coatings.	Apply
CO5	Learn and fabricate small scale devices	Analyse

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	2	3	2	2	1	2
CO2	2	2	1	2	2	1
CO3	3	2	1	2	2	3
CO4	2	1	2	2	3	2
CO5	2	3	2	1	2	2

Assessment Pattern

Bloom's Cotogony	Continuous Assessr	nent Tests (Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember	0	0	0
Understand	0	0	10
Apply	10	20	30
Analyze	20	20	30
Evaluate	20	10	20
Create	10	10	20

				-	f Technology				
	e	50 PNT 2P2			ice Fabricat		-	ratory	
					noscience ar				
	Semester		ours / Wee		Total hrs.	Credit		aximum Ma	
	II	L 0	<u>Т</u> 0	P 4	60	C	CA 60	ES 40	Total 100
	 Design Develop Establis pyrolysis Validate Test the Fabricat Design tester. Constru Fabricat Evaluate electroc Study th Estimate using FI Fabricat Fabricat 	the nano str o the metalli h the large- s. the mecha e linear conc te ZnO/PVD the thin film ct the triboe te and interf e I (corrosion) a hemical wo ne conductiv e the corros RA Impedar te sensor se	ructured coa c electrode scale antico nical proper ductivity of n PF thin film o coated pho electric ener face the self nd E (corrosion rkstation. rkstation. rity of the el- ion of prope- nce spectros	ating (ZnO) layer over prrosion coa rties of thin netal oxide on glass su toconducti gy harveste -powering n) of graphe ectrode ma erties of Al2 scopy. ection of bi	on glass spe the glass sub ating (Al ₂ O ₃ -2 film depositions s semicondur bstrate for oververvoltaic cel er and fabrica piezo electrica piezo electrica piez	ecimen using ostrate throug ZrO ₂) on meta on using Vick ctor using Ke cygen gas se I and test and ate via contac n presence contact n presence contact n presence contact posites coati nents.	spin coatin gh sputterin allic specim xers's hardr ithley source nsing prope d tests the ct separatio ator. of acid medi A Impedance	ig g Process. ien by hot-a ness. ce meter. erties. photocurre in mode ium through ce spectrosc	ir spray nt using I-'
	erence(s): A. Karthik et	al, Producti	on of Al ₂ O ₃ -	Stabilized	Tetragonal Z	rO ₂ Nanopar	ticles for Th	nermal Barri	er Coating
1	International								0
2	L. Arunraja e Applications,	t al, (2016)	EDTA Deco	orated Nano	ostructured Z	nO/CdS Thir	n Films for (Oxygen Gas	Sensing
3	O.K. Simya e Synthetic me	et al, Dye-se	ensitized sol				TiO ₂ hetero	junction na	noparticles
4	Zhong Lin W portable elec					l Caofeng Pa	in, Progress	s in nanogei	nerators fo
.ab	Manual								
-	Device Fabri	cation and	Testing La	boratory,	Department of	of Nano Scie	nce and Te	chnology, K	SRCT

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

60 DNT 204	Applications of	Category	L	Т	Р	Credit	
60 PNT 301	Nanocomposites	PC	3	0	0	3	

- To perceive the science and technology behind the nanocomposites.
- Acquire the knowledge on nanocomposite properties, features and processing of various nanocomposites.
- Impart knowledge on various testing methods, applications and recycling.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Acquire functional characteristic reinforced nanocomposite materials	
CO2	Apply the processing methodology for preparation of nanocomopsites.	
CO3	Demonstrate the basic properties organic-Inorganic materials.	
CO4	Learn the various testing methodology for nanomaterilas	
CO5	Use the nano materials as recycling for various industrial applications	

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	2	1	2
CO2	2	3	2	1	2	3
CO3	3	2	2	1	2	2
CO4	2	2	2	3	2	3
CO5	2	3	3	2	2	2

Assessment Pattern

Plaam'a Catagony	Continuous Assessn	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	20
Apply	10	10	30
Analyze	10	10	20
Evaluate	10	10	10
Create	10	10	10

	K.S.F	Rangasamy	/ College of	Technology	- Autonom	ous Regula	tion	
				lications of I				
		Depa	rtment of N	anoscience a	and Techno	logy		
Semester	ŀ	lours/Wee	k	Total hrs.	Credit	Ма	ks	
Semester	L	Т	Р	Total III's.	С	С	E	Total
	3	0	0	45	3	40	60	100
of composite	e of composi es – particle	reinforced	– fibre reinfo	and reinforce prced – structu mobiles –mag	iral composi	ite, Polymer	, metal and	[9]
	NG OF NAN		SITES					
Viscosity - T – Particle I processing - Melt proces	ypes of flow behavior – – Melting an ses with larg	– Non-Nev Insitu poly d softening je deformat	vtonian Flow merization – - Melt proces ions or high-	– Low-viscos - Post – For sses with sma shear rates -	ming-Melt, Ill shears or	high-shear Low-shear r	and direct ates flow –	[9]
Physics of visco elasti	city –Surfac site – basics	Continuum e mechani	measuremer ical properti	nts – Yield – es <i>–</i> Diffusion oosites–Nano	and permo	eability – F	eatures of	[9]
Characteriza characteriza Physicoche	ation – Sca micalanalysi	kperiment iles innanc s–Characte	composites- erization of p	Sample pre -Texture–Elec hysical prope erties –Recipe	ctromagnetic rties –Identif	cenergy–Vis fication – Me	ualization-	[9]
Surface mechanical – Exposure – Barrier properties – Recipes and standards. APPLICATIONS AND RECYCLING OF NANOCOMPOSITES Nanocomposites–Optical, Structural Applications– nanoparticulate Systems With Organic Matrices–Applications–Biodegradable Protein–Ceramics–Food Preservatives – Dental Materials – Automatic Components – Corrosion Protection-Properties And Property Changes Over Virgin Material – Contaminants – Role of Contaminants In Property Change. Future Regulatory Issues on Polymer Nanocomposite Based On solid waste management.						[9]		
	•		Total	Hours				45
Reference(s):							
1 Tho Prop 2 Klau	masE. perties,Proce is Friedrich,	Stoyko F	acterization,	troduction DesTechPubl ny Shang, F	to ications,Apr Polymer Coi	Nanocom il 2007 mposites fr	•	Material Macro–
	e,Springer,U		- h			20	_	
3 Ray 4 Man	Smith ,Biode	egradable p	Olymers for I	ndustrialAppli	cations,CR	Press,200	о С	
4 ivian	as Chandara	anu Salli K.	Roy, Plastics	technologyha	HUDOOK,CRO	SPress,2006	0	

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	INTRODUCTION	
1.1	Significance of composites	1
1.2	Functions of matrix and reinforcement in composites,.	1
1.3	Classification of composites	1
1.4	Particle reinforced – fibre reinforced	1
1.5	Structural composite and Polymer	1
1.6	Metal and ceramic matrix composites.	1
1.7	Applications in automobiles	1
1.8	Machine tools and aerospace	1
1.9	sports equipments	1

M.Tech.(NST) - Degree Programme 2022-2023

2	PROCESSINGOFNANOCOMPOSITES	
2.1	Viscosity - Types of flow	1
2.2	Non-Newtonian Flow – Low-viscosity processing -	1
2.3	Solvent processing – Particle behavior –.	1
2.4	Insitu polymerization – Post – Forming-Melt, high-shear and direct processing	1
2.5	Melting and softening-	1
2.6	Melt processes with small shears or Low-	1
2.7	shear rates flow	1
2.8	Melt processes with large deformations or high-shear rates	1
2.9	Thermo-kineticprocesses	1
3	PROPERTIESOFNANOCOMPOSITES	
3.1	Physics of modulus	1
3.2	Continuum measurements	1
3.3	Yield – Fracture	1
3.4	Rubbery elasticity and visco elasticity	1
3.5	Surface mechanical properties	1
3.6	Diffusion and permeability	1
3.7	Features of nanocomposite	1
3.8	basics of polymer nano composites	1
3.9	Nano reinforcements –Matrix materials–Hazards ofparticles	1
4	TESTINGANDVALIDATION	
4.1	Characterization - Experiment design	1
4.2	Sample preparation – Imaging	1
4.3	Structural characterization	1
4.4	Scales innanocomposites–Texture	1
4.5	Electromagneticenergy–Visualization–Physicochemicalanalysis	1
4.6	Characterization of physical properties	1
4.7	Identification – Mechanical – Surface mechanical	1
4.8	Exposure – Barrierproperties	1
4.9	Recipes and standards	1
5	APPLICATIONSANDRECYCLINGOFNANOCOMPOSITES	
5.1	Nanocomposites–Optical, Structural Applications	1
5.2	Nanoparticulate Systems With Organic Matrices Applications	1
5.3	Biodegradable Protein–Ceramics–Food Preservatives	1
5.4	Dental Materials – Automatic Components	1
	CorrosionProtection-	1
5.5	PropertiesAndPropertyChangesOverVirginMaterial	
5.6	Contaminants	1
5.7	Role of Contaminants In Property Change	1
E O	Future Regulatory Issues on Polymer Nanocomposite Based On	1
5.8	solid waster management.	
5.9	Future Regulatory Issues on Polymer Nanocomposite Based On solid waste management.	1
	Total	45

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

60 DNT 202	PNT 302 Nanotechnology in Energy Storage Devices	Category	L	Т	Р	Credit
60 PNT 302		PC	3	0	0	3

- To study the basic knowledge of Nanomaterials in Energy storage, Fundamentals, Rechargeable Batteries, Super capacitors, Fuel Cells and Advanced Batteries for Electric Vehicles and Emerging application.
- To Explore the application of Nanomaterials in Energy Storage and
- Acquire the knowledge about cell reaction, cell components and characteristics etc.,

Prerequisite

Basics of electronics

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the basic principles and concepts of energy storage	Remember
CO2	Acquire knowledge on Nanomaterials in energy storage devices	Remember
CO3	Know the basic concepts related to primary batteries	Apply
CO4	Understand the types and importance of primary batteries	Analyze
CO5	Know the basic concepts related to rechargeable batteries	Apply

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	2	3	3	2	2	1
CO2	2	3	3	3	2	2
CO3	3	2	3	2	2	1
CO4	3	3	3	3	2	3
CO5	3	2	3	2	2	2

Assessment Pattern

Bloom's Category	Continuous Assessr	End Sem Examination	
Bloom's Calegory	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyse	10	10	30
Evaluate	10	10	20
Create	10	10	0

					Technology			tion	
		6			nology in En				
Department of Nanoscience and Technology									
Seme	ster	Hours/Week			Total hrs.	Credit		aximum Mark	
		L	Т	Р		С	С	E	Total
		3	0	0	45	3	40	60	100
Introd									
		•••		••••••	y conversion	•			
			•	•	s-batteries-ad				[9]
•				onversion: F	Photovoltaic- F	Photoelectro	chemical- P	hotothermal	
		electric syst	ems.						
	•	tteries							
				•	- Performance		•	-	
			•	•	 Solid electro 	•			[9]
					anomaterials	in Specializ	zed Primary	Batteries -	
		ers and Torp		es.					
	-	ble Batterie							
					ead- acid batt				[9]
				•	Bulk and Na			onstruction -	[0]
			stics - Rece	nt advancen	nent in Nano -	electrode n	naterials.		
		gy system							
					g material- So			• •	
-	•				and holes tra	•	-	-	[9]
			• •	er -Single ju	nction and tri	ple-junction	solar pane	ls - metal-	
		tor hetero ju							
		and Super o						- h : f	
• •					stics and Oper				
				-	e - Innovative	-	-		[9]
			-	-	of Nanomateri		•		[-]
					gn - Perform	ance cnara	cteristics- a	application -	
Advan	tage o	of Nanomate	erials in Sup	er capacitor	S.		_		
								Total Hours	45
Refere									
	2,U-3	,U-						JSA, 2010. (U	-1,U-
					standing Batte				
					apacitors", Sp				
	2014	-		U				ons" Springer,	UK,
5.	Lefrou	u C., Fabry F	P., Poignet	JC., "Elect	rochemistry" S	Springer, Uk	K, 2014		

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	INTRODUCTION	
1.1	Nanotechnology for sustainable energy	1
1.2	Energy conversion process	1
1.3	Indirect and direct energy conversion	1
1.4	Materials for light emitting diode	1
1.5	Batteries and advanced turbines	1
1.6	Catalytic reactors	1
1.7	Capacitors and fuel cells	1
1.8	Solar energy conversion	1
1.9	Photovoltaic systems	1
2	PRIMARY BATTERIES	
2.1	Introduction to primary batteries	1
2.2	Classification of primary batteries	1
2.3	Performance characteristics of primary batteries	1
2.4	Zinc/carbon batteries characteristics	1
2.5	Lithium primary batteries	1
2.6	Solid electrolyte batteries	1
2.7	Cell reactions and constructions	1
2.8	Nanomaterials in specified primary batteries	1
2.9	Peacemakers and torpedo batteries	1
3	RECHARGEABLE BATTERIES	
3.1	Introduction to rechargeable batteries	1
3.2	Characteristics of lead acid batteries	1
3.3	VRLA batteries	1
3.4	Lithium ion batteries	1
3.5	Bulk and nanomaterials in cell constructions	1
3.6	Performance characteristics of rechargeable batteries	1
3.7	Nickel-MH batteries	1
3.8	Comparison between different rechargeable batteries	1
3.9	Recent advancement in nano electrode materials	1
4	SOLAR ENERGY SYSTEM	
4.1	Introduction to solar cells	1
4.2	Working principle of solar cells	1
4.3	Types of solar cells	1
4.4	Semiconducting materials	1
4.5	Properties of solar cells	1
4.6	Design of p-n junction photodiodes	1
4.7	Charge carrier generation of solar cells	1

4.8	I-V characteristics of solar cells	1
4.9	Metal semiconductor heterojunctions	1
5	FUEL CELLS AND SUPERCAPACITORS	
5.1	Introduction to fuel cells and supercapacitors	2
5.2	Types of fuel cells	1
5.3	PEMFC fuel cells	1
5.4	SOFC fuel cells	1
5.5	Characteristics and operation of fuel cells	1
5.6	Innovative designs for low wattage fuel cells	1
5.7	Applications of fuel cell technologies	1
5.8	Advantages of nanomaterials in fuel cells and supercapacitors	1
5.9	Performance characteristics of supercapacitors	1
	Total	45

Course Designers

Mr. R. Mohanraj (mohanrajr@ksrct.ac.in)

60 PNT 3P1	Project Work-Phase I	Category	L	Т	Р	Credit	
OU FNI SFI	Floject Work-Fliase 1	EEC	0	0	12	6	

- To help the students apply their academic knowledge and technical skills in a specific domain
- To facilitate the students to identify, formulate and solve engineering problems
- To help the students design a system, component or process to meet the desired needs within realistic constraint
- To work and communicate efficiently in multidisciplinary terms
- To develop an understanding of professional and ethical responsibility in students

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

At the end of the course, the students will be able to

CO1	Identify engineering problems in their domain of interest and carry out literature review in the chosen technical area	Apply
CO2	Analyze and identify an appropriate technique to solve the problem.	Analyse
CO3	Design engineering solution, do experimentation / simulation / programming / fabrication/ collect and interpret data utilizing a systems approach	Create
CO4	Communicate effectively in oral and written forms	Apply
CO5	Demonstrate the knowledge, skills and attitudes of a professional engineer as an individual and member of a team	Analyze, Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	3
CO2	2	3	2	2	2	3
CO3	3	2	3	3	3	3
CO4	3	3	3	2	3	3
CO5	3	3	2	2	3	3

K. S. Rangasamy College of Technology - Autonomous R2022								
60 PNT 3P1 - Project Work-Phase I								
Department of Nanoscience and Technology								
Semester	н	ours / Wee	k	– Total hrs.	Credit	Maximum Marks		
Semester	L	Т	Р		С	Total		
III	0	0	12	60	6	100		

Guideline/Instrution to students

- A committee is constituted with the project coordinator, project guide and HOD/Senior professor in the department
- Three reviews have to be conducted by the committee
- Problem should be selected by every batch of students
- Students must do a literature survey collecting a minimum of 1 survey paper and 2 technical papers related to their work
- Report has to be prepared by the students as per the format

Preliminary implementation can be done if possible Internal evaluation has to be done based on the three reviews for 100 marks

	Week	Activity				
	I	Allotment of Faculty Guide by the HOD				
	II	Finalizing the topic with the approva	al of Faculty Guide			
Execution	III-IV	Collection of Scientific papers				
	V – VI	Mid semester presentation				
	VII – VIII	Report writing				
	IX	Report Submission				
	X-XI	Final presentation				
		Continuous Assessment week and 2 credits				
	Component		Weightage			
Evaluation	Review – I Pres	sentation	20 %			
	Review – II Pre	esentation	20 %			
	Review – III Pre	esentation	20 %			
	Report prepara	tion and Submission	30 %			
	Vivo- Voce		10 %			
		Total	100%			

K. S. Rangasamy College of Technology - Autonomous R2022 60 PNT 4P1 - Project Work - Phase II									
		60 I	PNT 4P1 - I	Project Work	- Phase II				
	Department of Nanoscience and Technology								
Semester		lours / Wee		Total hrs.	Credit		aximum Ma		
	L	T	Р		C	CA	ES	Total	
IV	0	0	50	60	12	40	60	100	
Objective(s) • To pro • To solv	vide exposu ve a scientifi	ire to the st ic problem i	novative Ideas udents to nev in both practio	v areas of na cally and theo	oretically	gy.		
Methodolog	 By muthe sturn the sturn publish The sturn 5years Using 10 min The sturn the sen The sturn Abstra List of 	tual discuss ident. udents have ned literature udent is exp s. Power point iutes discuss udent has m mester. udent has to ct, review of References	ions, the fa to refer the osed to col , the studer sion. hake two pro o write a pro f research p). The proje	aculty of the o culty guide wi e Journals an lect at least 6 ht has to mak esentations, o oject report fo oaper under v ect report has e approval of	III assign a to d conference 0 such Rese e presentatio one at the mic r about 30-60 arious subhe to be submit	pic in the g proceedin arch paper on for 15-20 ddle and th pages (Ti eading, Con ted to the F	gs and colle s published minutes fo e other nea tle page, Or icluding ren	ect the in the last llowed by r the end of ne page narks and	
 60 % Continuous Assessment and 40 % End semester exam 60hrs/and 12credits 									
	Component				Weightag	Weightage			
Evaluation	Review – I Pro					10 %			
	Review – II P	resentation				20 %			
Review – III Presentation 30 %							0 %		
	End semester	Report pre	paration an	d Submissior	1	4	0 %		
				Tota	al	10	0%		

60 PNT E11	Polymers In Nanotechnology		Category	L	т	Р	Credit
	Forymers in Nanolechnology		PE	3	0	0	3

- To understand the formation of polymer chain
- To learn strength of the polymer and crystallinity
- To classify the types of nanocomposite
- To analysis the behavior of nanoscale organic transistor
- To compare properties of the natural and synthetic polymer

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recall basic ideas of polymerization technique	Remember
CO2	Acquire the knowledge about strength of the polymer	Apply
CO3	Analyze the behavior of nanocomposite	Analyze
CO4	Differentiate different types of LED's	Apply
CO5	Classify the different types of polymers	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern

Bloom's Catagony	Continuous Assessn	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	20
Apply	10	10	30
Analyze	10	10	30
Evaluate	10	10	10
Create	10	10	0

M.Tech.(NST) - Degree Programme 2022-2023

		K.S.F	Rangasamy	College of	Technology	- Autonom	ous Regula	tion	
			60 P	NT E11 - Po	olymers In Na	anotechnol	ogy		
Department of Nanoscience and Technology									
Seme	otor	ł	lours/Weel	k	Total hrs.	Credit	Ма	Maximum Marks	
Seme	ster	L	Т	Р	Total firs.	С	С	E	Total
		3	0	0	45	3	40	60	100
INTRO	DDUC	TION				L		•	
					ain growth a				[9]
					hermoplastics				[9]
			ers – polym	ier length, m	olecular weig	ht, amorpho	us and crys	talline.	
-	PERTIE	-		T			, , , ,	D	
					ngth, Surface f g_behavior, ir				[9]
				/mer degrad		ICIUSION OF	plasticizers	- types of	
		MERS	nisinis pory	mer degrad					
-	-	-	cterisation	of diblock of	copolymer ba	sed nano l	nvbrids. Na	noparticles	101
					polymer nar				[9]
polym	ers/cla	iy nanocom	posites.						
NANC	POLY	MERS IN E	LECTRON	ICS					
					e behaviour in				[9]
					cro to nanosc	ale - organi	c field effect	transistor,	[0]
		MERS IN T		larelectronic	S.				
-	-	-	-	nolymers in	electrospinn	ing contr	olling paran	notors and	
					ctro static se				[9]
	g in te		nanopa				a nanolayoi		
	0						Т	otal Hours	45
Refer	ence(s	s):							
1	Harry	R allcock, F	rederick W	lampe and	James E Mark	," Contemp	orary polym	er chemistry"	, person
	educa	tion, 2003		•		•			•
2	K cous	sins, keith c	ousins," pol	ymers in ele	ctronics" smit	hers Rapra	technology	publishers, 20	006
					d nanotechno				
4	France	es Gardiner	, Eleanor ca	arter,: polym	er electronics	 a flexible 	technology"	, ismithers, 2	209

Course Content and Lecture Schedule

S.No	Торіс	No. Hoi
1	INTRODUCTION	
1.1	Classification of Polymer	1
1.2	Function of polymers	1
1.3	Polymerization	1
1.4	Copolymerization	1
1.5	Electro polymerization	1
1.6	Thermoplastics and thermosets	1
1.7	Micro - nanostructures in polymers	1
1.8	Polymer length, molecular weight	1
1.9	Amorphous and crystalline	1
2	PROPERTIES	
2.1	Polymer morphology	1
2.2	Crystallinity	1
2.3	Tensile strength, Surface tension, Young's modulus	1
2.4	Phase behavior	1
2.5	Glass transition temperature	1
2.6	Mixing behavior	1
2.7	Plasticizers	1
2.8	Types of polymerization, mechanisms	1
2.9	Polymer degradation	1
3	NANOPOLYMERS	
3.1	Preparation diblock copolymer	1
3.2	Characterisation of diblock copolymer based nano hybrids	2
3.3	Nanoparticles polymer ensembles	1
3.4	Assembly of polymer	1
3.5	Polymer nanocomposite from polymerization	2
3.6	Polymers nanocomposites.	1
3.7	clay nanocomposites.	1
4	NANOPOLYMERS IN ELECTRONICS	
4.1	Printing techniques	1
4.2	Patterning techniques	1
4.3	Nanoscale behaviour in organic transistors	2
4.4	Transition of sensing response by organic transistor from micro to nanoscale	2
4.5	Organic field effect transistor	1
4.6	Organic light emitting diode.	1
4.7	Molecularelectronics	1
5	NANOPOLYMERS IN TEXTILES	ļ .
5.1	Hydrogels	1
5.2	Synthetic polymers in electrospinning	1
5.3	Natural polymers in electrospinning	1
5.4	Controlling parameters of nanofibers	2
5.5	Morphology of nanofibers	2
5.6	Electro static self-assembled nanolayer films and coating in textiles	2
	Total	4

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

60 PNT E12

Nanotechnology in Biomedical Instrumentation

Category	L	Т	Ρ	Credit
PE	3	0	0	3

Objective

- To familiarize students with various aspects of measuring electrical parameters from living body.
- To introduce students with the characteristics of medical instruments and related errors.
- To illustrate various types of amplifiers used in biomedical instruments.
- To familiarize students with biomedical recorders.
- To introduce students with patient monitoring system & its characteristics.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

	•	
CO1	Describe and characterize the sources of biomedical signals and needs of using biomedical instruments & their limitations.	Remember, Apply
CO2	Understand & describe pc based medical instrumentation & regulation of medical devices.	Remember, Apply, Evaluate
CO3	Describe and characterize medical instruments as per their specifications, static & dynamic characteristics and understand data acquisition system.	Remember, Understand, Analyze
CO4	Describe, analyze, characterize and design Bio-amplifiers.	Remember, Understand, Analyze
CO5	Understand, describe, characterize and design various medical recording systems & their components.	Remember, Understand, Apply

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	2	3	2	1	2	1
CO2	3	2	2	2	2	2
CO3	3	2	3	2	2	3
CO4	3	3	2	3	2	2
CO5	2	3	2	3	1	2

Assessment Pattern

Bloom's Category		Assessment Tests Marks)	End Sem Examination
Dicom o catogory	1	2	(Marks)
Remember (Re)	10	10	10
Understand (Un)	10	10	20
Apply (Ap)	10	10	30
Analyze (An)	10	10	30
Evaluate (Ev)	10	10	10
Create (Cr)	10	10	0

				Technology –				
	OU PNI E			y in Biomedic		entation		
	Hours	s/Week			Credit		Maximur	n Marks
Semes	L III	T	Р	Total hrs.	C	СА		
	3	0	0	45	3	40	60	100
IEDIC/	AL INSTRUMENTATIO	N					I	
f medi nstrum	of Biomedical Signals cal Instrumentation sys ents, General constrai devices.	stem, Micr	oprocess	ors in medical	instrument	s, PC ba	sed medica	al [9]
IEASU Specific Classific ineariz	REMENT SYSTEMS ations of instruments cation of errors, Statis ation of technique, Data	tical analy a Acquisiti	/sis, Řelia on Systen	ability, Accurao n.				
Drigin o Iotion mplifie	CTRIC SIGNALS AND f bioelectric signals, Ele artifacts, Instrumentati rs, Chopper amplifiers,	ectrodes, E on amplif Phase ser	Electrode- iers, Spe	tissue interface cial features				
-	DICAL RECORDING S ecording systems, Gen	eral consi	deration fo	or cignal condi	Honoro Dro			
lectroe nstrume		ctromyogra and Elect	ocardiogra aphy, C romagnet	aph, Vectorc)ther biomed	ardiograph, lical reco	Phono rders,	cardiograph Biofeedbac	^{n,} [9]
Electroe Instrume Patient i Patient System Inonitors	encephalograph, Electrostatic isolation and accident p Monitoring Systems concepts, Cardiac mo s, Heart rate meter, P	ctromyogra and Elect prevention. pnitor, sele ulse rate	ocardiogra aphy, C romagnet ection of s meter, Ho	aph, Vectorc Other biomed ic coupling to system parame olter monitor a	ardiograph, dical reco AC signals eters, Beds and Cardiac	Phono rders, s, Prope de moni	cardiograph Biofeedbac r grounding tors, Centra	^{n,} [9] ^{1,}
lectroe nstrume Patient i Patient System nonitors	encephalograph, Electrostatic isolation and accident p Monitoring Systems concepts, Cardiac mo	ctromyogra and Elect prevention. pnitor, sele ulse rate	ocardiogra aphy, C romagnet ection of s meter, Ho	aph, Vectorc Other biomed ic coupling to system parame olter monitor a	ardiograph, dical reco AC signals eters, Beds and Cardiac	Phono rders, s, Prope de moni stress t TU.	cardiograph Biofeedbac r grounding tors, Centra	n, [9] k [9] al [9]
electroe enstrume Patient i Patient System nonitors auteriz	encephalograph, Electrostatic isolation and accident p Monitoring Systems concepts, Cardiac mo s, Heart rate meter, P	ctromyogra and Elect prevention. pnitor, sele ulse rate	ocardiogra aphy, C romagnet ection of s meter, Ho	aph, Vectorc Other biomed ic coupling to system parame olter monitor a	ardiograph, dical reco AC signals eters, Beds and Cardiac	Phono rders, s, Prope de moni stress t TU.	cardiograph Biofeedbac r grounding tors, Centra est, Cardia	n, [9] k [9] al [9]
lectroe Patient Patient System nonitors auteriz	encephalograph, Electrostatic isolation and accident p Monitoring Systems concepts, Cardiac mo s, Heart rate meter, P ation instrumentation, C	ctromyogra and Elect prevention. pnitor, sele ulse rate Organizatio	ocardiogr aphy, C romagnet ection of s meter, He on and eq	aph, Vectorc Other biomed ic coupling to system parame olter monitor a uipments used	ardiograph, dical reco AC signals eters, Beds and Cardiac in ICCU &	Phono rders, s, Prope ide moni stress t TU.	cardiograph Biofeedbac r grounding tors, Centra est, Cardia Total Hour	n, [9] k [9] al [9]
eatient eatient eatient eatient existem nonitors auteriz Textbo	encephalograph, Electrostatic isolation and accident p Monitoring Systems concepts, Cardiac mo s, Heart rate meter, P ation instrumentation, C	otromyogra and Elect prevention. onitor, select ulse rate Organization ok of Bio-	ocardiography, C romagnet ection of s meter, Ho on and eq Medical Ir	aph, Vectorc Other biomed ic coupling to system parame olter monitor a uipments used	ardiograph, dical reco AC signals eters, Beds and Cardiac in ICCU & ', 2nd Editio	Phono rders, s, Prope ide moni stress t TU. n, Tata M	cardiograph Biofeedbac r grounding tors, Centra est, Cardia Total Hour IcGraw Hill	n, [9] k [9] al [9] s 45
etterroe Patient i Patient Patient Patient System nonitors auteriz Textbo 1. R 2. J.	encephalograph, Electrostatic isolation and accident p Monitoring Systems concepts, Cardiac mo s, Heart rate meter, P ation instrumentation, C cok(s):	otromyogra and Elect prevention. onitor, select ulse rate Organization ok of Bio-	ocardiography, C romagnet ection of s meter, Ho on and eq Medical Ir	aph, Vectorc Other biomed ic coupling to system parame olter monitor a uipments used	ardiograph, dical reco AC signals eters, Beds and Cardiac in ICCU & ', 2nd Editio	Phono rders, s, Prope ide moni stress t TU. n, Tata M	cardiograph Biofeedbac r grounding tors, Centra est, Cardia Total Hour IcGraw Hill	n, [9] k [9] al [9] s 45
Patient Patient Patient System nonitors auteriz 1. R 2. J. Refere	encephalograph, Electrostatic isolation and accident p Monitoring Systems concepts, Cardiac mo s, Heart rate meter, P ation instrumentation, C Dok(s): I. S. Khandpur "Handbo J.Carr&J.M.Brown, "Int	otromyogra and Elect prevention. onitor, select ulse rate Organization ok of Bio-lock roduction	ocardiography, C romagnet ection of s meter, Ho on and eq Medical Ir to Biomed	aph, Vectorc Other biomed ic coupling to system parame olter monitor a uipments used nstrumentation' dical Equipmen	ardiograph, dical reco AC signals eters, Beds and Cardiac in ICCU & ', 2nd Editio it Technolog	Phono rders, s, Prope ide moni stress t TU. n, Tata M y" Pears	cardiograph Biofeedbac r grounding tors, Centra est, Cardia Total Hour IcGraw Hill on Educatio	n, [9] k [9] al [9] s 45 on, Asia
Electroe Patient P Patient System nonitors auteriz 1. R 2. J. Refere 1. C	encephalograph, Electrostatic isolation and accident p Monitoring Systems concepts, Cardiac mo s, Heart rate meter, P ation instrumentation, C Dok(s): L. S. Khandpur "Handbo J.Carr&J.M.Brown, "Int ence(s):	ctromyogra and Elect prevention. onitor, select ulse rate Drganization ok of Bio- roduction	ocardiogr aphy, C romagnet ection of s meter, He on and eq Medical Ir to Biomed edical Ins	aph, Vectorc Other biomed ic coupling to system parame olter monitor a uipments used nstrumentation' dical Equipment	ardiograph, dical reco AC signal eters, Beds and Cardiac in ICCU & ', 2nd Editio it Technolog Measurem	Phono rders, s, Prope ide moni stress t TU. n, Tata M y" Pears ent", Prer	cardiograph Biofeedbac r grounding tors, Centra est, Cardia Total Hour IcGraw Hill on Educatio	n, [9] k [9] al [9] s 45 on, Asia
Electroe nstrume Patient Patient System nonitors cauteriz 1. R 2. J. Reference 1. C 2. Ju	encephalograph, Electrostatic isolation and accident p Monitoring Systems concepts, Cardiac mo s, Heart rate meter, P ation instrumentation, C Dok(s): S. Khandpur "Handbo J.Carr&J.M.Brown, "Int ence(s): Fromwell, Weibell& Pfeit	etromyogra and Elect prevention. onitor, select ulse rate Drganization ok of Bio- roduction fer, "Biom edical Eng	ocardiography, C romagnet ection of s meter, Ho on and eq Medical In to Biomec edical Ins ineering a	aph, Vectorc Other biomed ic coupling to system parame olter monitor a uipments used nstrumentation' dical Equipment trumentation & and Instrumenta	ardiograph, dical reco AC signal eters, Beds and Cardiac in ICCU & ', 2nd Editio it Technolog Measurem	Phono rders, s, Prope ide moni stress t TU. n, Tata M y" Pears ent", Prer	cardiograph Biofeedbac r grounding tors, Centra est, Cardia Total Hour IcGraw Hill on Educatio	n, [9] k [9] al [9] s 45 on, Asia

Course Contents and Lecture Schedule

S.No.	Торіс	No.of Hours
1	MEDICAL INSTRUMENTATION	1
1.1	Sources of Biomedical Signals	1
1.2	Basic medical Instrumentation system	1
1.3	Performance requirements of medical Instrumentation system	2
1.4	Microprocessors in medical instruments	1
1.5	PC based medical Instruments	1
1.6	General constraints in design of medical Instrumentation system	1
1.7	Regulation of Medical devices	2
2	NUMERICAL INTEGRATION	
2.1	Specifications of instruments	1
2.2	Static & Dynamic characteristics of medical instruments	1
2.3	Classification of errors	1
2.4	Statistical analysis	1
2.5	Reliability, Accuracy	1
2.6	Fidelity	1
2.7	Speed of response	1
2.8	Linearization of technique	1
2.9	Data Acquisition System	1
3	MATHEMATICAL MODELING	
3.1	Origin of bioelectric signals	1
3.2	Electrodes	1
3.3	Electrode-tissue interface	1
3.4	Galvanic Skin Response	1
3.5	BSR, Motion artifacts	1
3.6	Instrumentation amplifiers	1
3.7	Special features of bioelectric amplifiers	1
3.8	Carrier amplifiers-Chopper amplifiers	1
3.9	Phase sensitive detector	1
4	BIOMEDICAL RECORDING SYSTEMS	
4.1	Basic Recording systems	1
4.2	General consideration for signal conditioners	1
4.3	Preamplifiers, Differential Amplifier, Isolation Amplifier	1
4.4	Electrocardiograph, Vectorcardiograph, Phonocardiograph	1
4.5	Electroencephalograph, Electromyography	1
4.6	Other biomedical recorders, Biofeedback Instrumentation	1
4.7	Electrostatic and Electromagnetic coupling to AC signals	1
4.8	Proper grounding	1
4.9	Patient isolation and accident prevention	1
5	PATIENT MONITORING SYSTEMS	

5.1	System concepts	1
5.2	Cardiac monitor	1
5.3	selection of system parameters	1
5.4	Bedside monitors	1
5.5	Central monitors	1
5.6	Heart rate meter, Pulse rate meter	1
5.7	Holter monitor and Cardiac stress test	1
5.8	Cardiac cauterization instrumentation	1
5.9	Organization and equipments used in ICCU & ITU	1
	Total	45

Course Designers

Mr. R. Mohanraj (mohanrajr@ksrct.ac.in)

60 DNT 542	Nanosensors and	Category	L	т	Р	Credit
60 PNT E13	Applications	PE	3	0	0	3

Objective

- Acquire knowledge in Characteristics of Sensors
- To understand the concept of Nano based sensors.
- To Identify the basic types of sensors and transducers
- Tostudy the types and working of gas and thermal sensors
- To understand the different in applications of sensors in nano filed.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the basics, classification, fundamentals and configuration of sensors				
CO2	Understand the parameters and physical nature of sensors	Understand			
CO3	Describe the various features of transducers	Analyze			
CO4	To understand the nature of piezoelectric materials.	Apply			
CO5	Discuss the various industrial Applications of sensors	Analyze			

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	3	3
CO2	3	3	2	3	3	3
CO3	3	3	2	3	3	2
CO4	3	3	2	3	3	3
CO5	3	3	3	2	3	3

Passed in BoS Meeting held on 20/07/2022,

Approved in Academic Council Meeting held on 23/07/2022

M.Tech.(NST) -	Dearee	Programme	2022-2023
		209.00		

Pleam's Category	Continuous Assessm	End Sem Examination		
Bloom's Category	1	2	(Marks)	
Remember	10	10	10	
Understand	10	10	10	
Apply	10	10	40	
Analyse	10	10	20	
Evaluate	10	10	20	
Create	10	10	10	

K.S.Rangasamy College of Technology - Autonomous Regulation 60 PNT E13 - Nanosensors and Applications Department of Nanoscience and Technology Hours/Week **Maximum Marks** Credit Total hrs. Semester Ρ С L т С E Total 0 45 3 40 60 100 Ш 3 0 Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus. **Characteristics of Sensors** Sensors principle -Types of Sensors -Active and Passive sensors - Static characteristic -Accuracy, offset and linearity - Dynamic characteristics - First and second order sensors -[9] Physical effects involved in signal transduction- Photoelectric effect - Photoluminescence effect - Electroluminescence effect - chemiluminescence effect - Piezoelectric effect - Pyroelectric effect. Nano based sensors Density of state in 3D, 2D, 1D and 0D nanomaterials - one dimensional gas sensors:- gas sensing with nanostructured thin films, nanofiber, nano rod and quantum dot absorption on [9] surfaces -metal oxide modifications by additives - surface modifications -organic-inorganic hybrid nanocomposite sensors- nano optical sensors - nano mechanical sensors - plasmon resonance sensors. Self -powering device and transducers Sensor Technologies and Energy Harvester Fabrication/Construction of Sensor Devices-Smart Sensors-Self Powering Sensors- Photoacoustic-Nano generator: Triboelectric-Piezoelectric-[9] Types-Materials-Hybrid Generator. Conductometric and capacitive transducers - optical waveguide based transducers - optical fiber based transducers - Interferometric optical transducers — electrochemical transducers- schottky diode based transducers. **GAS AND THERMAL SENSORS** Criteria for the choice of materials, Experimental aspects - materials, properties - measurement of gas sensing property, sensitivity - Discussion of sensors for various gases - Gas sensors [9] based on semiconductor devices - Thermal energy sensors - temperature sensors - heat sensors- Optical and radiation sensors. **APPLICATIONS** Cantilever array sensors -Cantilever sensors for diagnosis of diabetes mellitus and cancer [9] diagnosis -Nanotube based sensors for DNA detection and capnography -Nanowire based

Passed in BoS Meeting held on 20/07/2022,

Assessment Pattern

Approved in Academic Council Meeting held on 23/07/2022

M.Tech.(NST) - Degree Programme 2022-2023

sens	ors and single viruses - biomolecules and bio sensors- Electrochemical sensor and		
pesti	cide detectors-Night vision systems.		
	Total Hours (45+15)	45	
Refe	rence(s):		
4.	K. Goser, P. Glosekotter and J. Dienstuhl, "Nanoelectronics and Nanosystems-From Trans toMolecular Quantum Devices", Springer, 2004.	istors	
5.	5. Herve Rigneault, Jean-Michel Lourtioz, Claude Delalande, Ariel Levenson, "Nanophotonics", Wiley- IST -2006.		
6.	W.R.Fahrner, "Nanotechnology and Nanoelectronics – Materials, Devices and Measuremer Techniques" Springer, 2006.	nt	
7.	K.E. Drexler, "Nano systems", Wiley India, 2010.		

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	CHARACTERISTICS OF SENSORS	
1.1	Sensors principle -Types of Sensors -Active and Passive sensors	1
1.2	Static characteristic - Accuracy, offset and linearity	1
1.3	Dynamic characteristics	1
1.4	First and second order sensors	1
1.5	Physical effects involved in signal transduction	1
1.6	Photoelectric effect	1
1.7	Photoluminescence effect, Electroluminescence effect	1
1.8	Chemiluminescence effect	1
1.9	Piezoelectric effect and Pyroelectric effect.	1
2	NANO BASED SENSORS	
2.1	Density of state in 3D, 2D, 1D and 0D nanomaterials	1
2.2	One dimensional gas sensors	1
2.3	Gas sensing with nanostructured thin films	1
2.4	Nanofiber, nano rod and quantum dot absorption on surfaces	1
2.5	Metal oxide modifications by additives	1
2.6	Surface modifications	1
2.7	Organic–inorganic hybrid nanocomposite sensors	1
2.8	Nano optical sensors – nano mechanical sensors	1
2.9	Plasmon resonance sensors	1
3	SELF-POWERING DEVICE AND TRANSDUCERS	
3.1	Sensor Technologies and Energy Harvester Fabrication	1
3.2	Construction of Sensor Devices	1
3.3	Smart Sensors–Self Powering Sensors	1
3.4	Photoacoustic sensor	1
3.5	Nano generator: Triboelectric-Piezoelectric-Types, Materials- Hybrid Generator	1
3.6	Conductometric and capacitive transducers	1
3.7	Optical waveguide based transducers and optical fiber based transducers	1
3.8	Interferometric optical transducers and electrochemical transducers	1
3.9	Schottky diode based transducers	1
4	GAS AND THERMAL SENSORS	
4.1	Criteria for the choice of materials	1
4.2	Experimental aspects – materials, properties	1
4.3	Measurement of gas sensing property	1
4.4	Sensitivity	1
4.5	Discussion of sensors for various gases	1
4.6	Gas sensors based on semiconductor devices	1
4.7	Thermal energy sensors	1

M.Tech.(NST) - Degree Programme 2022-2023					
4.8	Temperature sensors - heat sensors	1			
4.9	Optical and radiation sensors	1			
5	APPLICATIONS				
5.1	Cantilever array sensors	1			
5.2	Cantilever sensors for diagnosis of diabetes mellitus and cancer diagnosis	1			
5.3	Nanotube based sensors for DNA detection and capnography	1			
5.4	Nanowire based sensors and single viruses	1			
5.5	Biomolecules and bio sensors	1			
5.6	Electrochemical sensor	1			
5.7	Pesticide detectors	1			
5.8	Night vision systems	1			
	Total	45			

Course Designers

1. Dr.T.Baranidharan - baranidharan@ksrct.ac.in

60 PNT E14	Nonodovisoo	Category	L	т	Ρ	Credit
60 PNT E14	Nanodevices	PE	3	0	0	3

Objective

- To analyse the development of nano electronics.
- To study the principle behind the nanodevices.
- To explore the application of nano devices.
- To analyse and study the molecular and bioelectronics on nano application.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	To impart the knowledge on the semiconductor nanodevices	Apply
CO2	Realize electron conduction in metal based nanoparticles	Analyze
CO3	To impart fundamental knowledge about crystallography, conducting, superconducting, magnetic, dielectric, semiconducting materials	Remember
CO4	Understand the emerging ideas of challenges of synthesis of nanomaterials	Remember
CO5	Discuss the applications of nano electronics	Apply

Passed in BoS Meeting held on 20/07/2022,

Approved in Academic Council Meeting held on 23/07/2022

M.Tech.(NST) - Degree Programme 2022-2023

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	2	3	3	3
CO2	2	2	3	3	2	2
CO3	2	3	3	3	1	1
CO4	3	2	2	2	2	1
CO5	3	3	3	3	1	3

Assessment Pattern

Bloom's Category	Continuous Assess	Continuous Assessment Tests (Marks)			
BIODITI'S Calegory	1	2	(Marks)		
Remember	10	10	10		
Understand	10	10	10		
Apply	10	10	30		
Analyse	10	10	30		
Evaluate	10	10	20		
Create	10	10	0		

			60 PNT	E14 - Nanode	vices			
Department of Nanoscience and Technology								
Semester		Hours/Wee	k	Total hrs.	Credit	Ма	ximum Mar	ks
Semester	L	Т	Р		С	С	E	Total
II	3	0	0	45	3	40	60	100
– Split gate tr automata – Entanglement	ansistor – Quantum c – Quantum	Electron wa lot array –	ve transisto Quantum	copic structure or – Electron s computer- Bi	pin transisto	or – Quantu	m cellular	[9]
diode – Three	nent – Tun -terminal re rcuits – Dyr	esonate tunr	neling devic	elements -Tur es -Technolog al circuits desig	y of RTD -	Memory app	lications –	[9]
 Cryotron - Addressable i 	oscopic cha Josephson nemory - S Jar automa	aracteristics tunneling QUID – Flu ata - Quanti	devices - E ix quantum um compute	opic model - S Elementary cir device – LC - er with single	cuits – Ass · Gate – Ma	ociative or ignetic flux o	Content – quantum –	[9]
	integrated at dissipati	electronics · on – Paramo	eter spread	limits – Repla as limiting effe		-		[9]

	M. Tech. (NST) - Degree Programme 2022-2023				
motior	n - Debye length – Thermal noise - Reliability as limiting factor – Physical limits –				
Therm	odynamic limits - Relativistic limits – Equal failure rates by tunneling and thermalnoise				
BIOEL	ECTRONICS				
Bioele	ctronics – Molecular processor – DNA analyser molecular electronics – Switches based on				
fullerenes and nanotubes-Polymerelectronic-Selfassembling circuits-Optical molecular memories-					
DNAc	omputer- Information processing with chemical reaction – Nano machines – Parallel	[9]			
proces	ssing.				
	Total Hours	45			
Refere	ence(s):				
1	K. Goser, P. Glosekotter and J. Dienstuhl, "Nanoelectronics and Nanosystems-From Transi	istors to			
I	Molecular Quantum Devices", Springer, 2004.				
2	HerveRigneault, Jean-Michel Lourtioz, Claude Delalande, Ariel Levenson, "Nanophotonics"	, ISTE.			
	W.R.Fahrner, "Nanotechnology and Nanoelectronics – Materials, Devices and				
2	MaaauromontToobniquoo"				

MeasurementTechniques" Springer, 2006. 3

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	QUANTUM DEVICES	
1.1	Quantum electronic devices	1
1.2	Electrons in mesoscopic structures	1
1.3	Short channel MOS transistor	1
1.4	Split gate transistor	1
1.5	Electron wave transistor and electron spin transistor	1
1.6	Quantum cellular automation	1
1.7	Quantum dot array and quantum computer	1
1.8	Bit and qubit	1
1.9	Coherence and quantum parallelism	1
2	TUNNELING DEVICES	
2.1	Introduction about tunneling elements	1
2.2	Resonant tunneling diodes	1
2.3	Three terminal resonant tunneling diodes	1
2.4	Technology of RTD	1
2.5	Memory applications of RTD	1
2.6	Basics of logic circuits	1
2.7	Dynamic logic gates	1
2.8	Digital circuits design based on RTBT	1
2.9	Single electon transistor	1
3	SUPERCONDUCTING DEVICES	
3.1	Mesoscopic characteristics	1
3.2	Superconducting switching devices	1
3.3	Cryotron and josephson tunneling devices	1
3.4	Associative or content memory	1
3.5	Addressable memory	1
3.6	SQUID and flux quantum devices	1

	M.Tech.(NST) - Degree Programme 2022-2023	
3.7	Magnetic flux quantum and quantum cellular automation	1
3.8	Quantum computer with single flux devices	1
3.9	SFQD and RSFQD and its applications	1
4	CHALLENGES IN NANODEVICES	
4.1	Limitations of integrated electronics	1
4.2	Replacement of technologies in nanodevices	1
4.3	Energy supply and heat dissipation of nanodevices	1
4.4	Limits due to thermal particle motion	1
4.5	Debye length and thermal noise	1
4.6	Reliability as limiting factor	1
4.7	Physical limits and thermodynamic limits	1
4.8	Relativistic limits of nanodevices	1
4.9	Equal failure rates by tunneling	1
5	BIOELECTRONICS	
5.1	Basics of bioelectronics	2
5.2	Molecular processor	1
5.3	DNA analyser molecular electronics	1
5.4	Switch based on fullerenes and nanotubes	1
5.5	Polymer electronic devices	1
5.6	Self assembling circuits	1
5.7	Optical molecular memories	1
5.8	DNA computer and information processing	1
5.9	Nano machines and parallel processing	1
	Total	45

Course Designers

Mr. R. Mohanraj (mohanrajr@ksrct.ac.in)

60 PNT E15	Advanced Solid State Materials	Category	L	т	Р
OU PNI EIS	Auvanceu Sonu State Materiais	PE	3	0	0

Credit

3

Objective

- To identify the structure of crystal
- To know about dielectric concept
- To analyze the properties of magnetic material
- To recall the semiconducting properties
- To apply the smart materials to modern tool usage

Prerequisite

Solid state Physics **Course Outcomes** On the successful completion of the course, students will be able to

	M.Tech.(NST) - Degree Programme 2022-2023						
CO1	Recognize the knowledge of the crystal	Remember					
CO2	Analyze the dielectric properties	Apply					
CO3	Classify the magnetic materials	Analyze					
CO4	Compare the direct and indirect band gap materials	Apply					
CO5	Identify the new usage of smart materials	Analyze					

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern

Bloom's Category	Continuous Assessme	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	30
Evaluate	10	10	10
Create	10	10	10

	K.S.F			Technology			tion	
60 PNT E15 - Advanced Solid State Materials Department of Nanoscience and Technology								
Compostor		- lours/Weel			Credit		aximum Mar	ks
Semester	L	Т	Р	Total hrs.	С	С	E	Total
II	3	0	0	45	3	40	60	100
crystalline solids-amorphous solids-lattice-basis-unit cell-crystallographic axes-primitives-lattice parameters- primitive cell -seven crystal systems - miller indices -crystal structure of materials- simple cubic - body centered cubic-face centered cubic – hexagonal structure-types of symmetry- bonding in solids-primary bonds- secondary bonds- imperfections-point, line, surface & volume – color centers						[9]		
of dielectric	epts of diele materials ba	ctric materia used on temp	perature – C	properties - t laussius-Mos electric mater	otti relation I	Dielectric Co	onstant and	[9]
magnetic m	ro and ant aterials- fer	i-ferromagn rites-structu	ral and its p	als and its p properties-ma ing-MR imagi	gnetic optic	al recording	materials-	[9]
SEMICOND		ATERIALS						[9]

	M. Tech. (NST) - Degree Programme 2022-2023			
	aration of Semiconducting Materials-Band Gap-Direct, Indirect Band gap-Semiconductor			
Banc	I Gaps-P- type-N-type –Fermi level-Fermidirac - Brillouin Zone-Advanced Semiconducting			
Mate	rials-Functionalization of Charge –Hall effect-Charge Carriers- Basics of quantum dot, wire			
and v	vell materials and quantum laser.			
SMA	RT MATERIALS			
Shape memory alloys-Phase Transformations - Properties of SMA – classification of metal				
alloys-Ferrous alloys-Phase diagram-Titanium alloys- Nonferrous alloys - applications – Micro				
valve	& pump. Metallic glasses– preparation – properties – applications.			
	Total Hours	45		
Refe	rence(s):			
1	V. Rajendran, Materials Science, Tata McGraw Hill, New Delhi, 2011.			
2	A.J. Dekker, Solid state Physics, Macmillan India Ltd, New Delhi, 2012.			
3	S.O. Pillai, Solid state Physics, New Age International(p)Ltd, 2007 Revised Edition			
5	erer i mai, eena etate i nyeree, ten i tige international(p/Eta, Eeer i terreea Eatteri			

4 C. Kittle, Introduction to Solid State Physics 8thEdition, Wiley publishers, 2005.

Course Contents and Lecture Schedule

S.No	Торіс	No. of Hours
1	CRYSTALLOGRAPHY	
1.1	Crystalline solids	1
1.2	Amorphous solids - lattice-basis-unit cell	1
1.3	Crystallographic axes – primitives - lattice parameters - primitive cell	1
1.4	Seven crystal systems	1
1.5	Miller indices - crystal structure of materials - simple cubic	1
1.6	Body centered cubic - Face centered cubic – Hexagonal structure	1
1.7	Types of symmetry – types of bonding in solids	1
1.8	Imperfections-point, line, surface & volume – color centers	1
1.9	Plank's quantum hypothesis	1
2	DIELECTRIC MATERIALS	
2.1	Basic concepts of dielectric materials	1
2.2	Dielectric properties - types of polarization	1
2.3	Classification of dielectric materials based on temperature	1
2.4	Claussius-Mosotti relation	1
2.5	Dielectric Constant and Dielectric Loss	1
2.6	Breakdown mechanism	1
2.7	Ferroelectric material	1
2.8	Multiferroics	1
2.9	Multiferroics - applications	1
3	MAGNETIC MATERIALS	
3.1	Dia – Para - Ferro magnetic materials	1
3.2	Anti-ferromagnetic materials and its properties	1
3.3	Ferrites	1
3.4	Hard and soft magnetic materials	1
3.5	Ferrites - structural and its properties	1
3.6	Magnetic optical recording materials	1
3.7	Magnetic computer data storage	1
3.8	NMR imaging -MR imaging	1

	M.Tech.(NST) - Degree Programme 2022-2023			
3.9	Storage – Memory - Recording and	1		
5.5	imaging	1		
4	SEMICONDUCTING MATERIALS			
4.1	Preparation of Semiconducting	1		
	Materials			
4.2	Band Gap - Direct, Indirect Band gap	1		
4.3	Semiconductor Band Gaps P - type	1		
4.4	Semiconductor Band Gaps N-type	1		
4.5	Fermi level	1		
4.6	Fermi Dirac	1		
4.7	Brillouin Zone - Advanced	1		
4.7	Semiconducting Materials	I		
4.8	Functionalization of Charge – Hall effect	1		
4.0	- Charge Carriers	I		
4.9	Basics of quantum dot, wire and well	1		
	materials and quantum laser	Ι		
5	SMART MATERIALS			
5.1	Shape memory alloys - Phase	1		
_	Transformations			
5.2	Properties of SMA	1		
5.3	Classification of metal alloys	1		
5.4	Ferrous alloys - Phase diagram -	1		
5.5	Titanium alloys	1		
5.6	Nonferrous alloys - applications	1		
5.7	Micro valve & pump	1		
5.8	Metallic glasses – preparation	1		
5.9	Metallic glasses – properties –	1		
5.9	applications.	1		
	Total	45		

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

	Thin Film Science and	Category	L	т	Р	Credit
60 PNT E16	Technology	PE	3	0	0	3

Objective

- To understand the basic knowledge of thin film technology.
- To learn the application of nanomaterials in thin film technology
- To acquire the knowledge about various coating technique and modification of surface
- To understand the basic properties of Thin film and its characterization techniques.
- To learn the basic applications of Thin film and its industrial

Prerequisite

Basics of Thin film technology

Course Outcomes

On the successful completion of the course, students will be able to

	M.Tech.(NST) - Degree Programme 2022-2023				
CO1	Address basic principles and concepts of thin film techniques	Remember			
CO2	Acquire knowledge on nanomaterial characterization techniques	Analyze			
CO3	Verify the basic concepts of absorption and diffusion in thin films	Analyze			
CO4	Identify the various stress in thin film	Analyze			
CO5	Analyze the modification of surfaces of film	Analyze			

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern

Plaam'a Catagony	Continuous Ass	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	30
Evaluate	10	10	10
Create	10	10	10

M.Tech.(NST) - Degree Programme 2022-2023

		K.S.F	Rangasamy	/ College of	Technology	- Autonom	ous Regula	tion	
			60 PN1	۲E16 - Thin	Film Science	e and Techr	nology		
Department of Nanoscience and Technology									
0			lours/Wee	k	Tatallar	Credit	M	aximum Mark	(S
Seme	ester	L	Т	Р	P Total hrs		С	E	Total
II		3	0	0	45	3	40	60	100
		DEPOSITIO			•				
Chem – CVD Depos	istry o) Ther sition r	f Evaporatic mal and Pla nechanisms	n - Therma Isma – Spir	al evaporation n and Dip co	cal vapor dep n – Pulsed las pating – Electr	ser depositio	on - Chemic	al methods	[9]
Surfac Secon Techn analys	ce ana idary iiques sis Teo	Ion Mass S – Scanning chniques – E	ques – Aug Spectroscop Electron Ellipsometry	ger Electron by – X-ray I Microscopy v – Photolum	spectroscopy Energy Dispe – Transmissi inescence Sp	ersive Analy on Electron	,sis- Imagin	g Analysis	[9]
ADSORPTION AND DIFFUSION IN THIN FILMS Physisorption – Chemisorption – Work function changes induced by adsorbates – Two- dimensional phase transitions in adsorbate layers – Adsorption kinetics – Desorption techniques. Fundamentals of diffusion – Grain Boundary Diffusion – Thin Film Diffusion Couples - Inter Diffusion -Electromigration in thin films – Diffusion during film growth.						echniques.	[9]		
Origin polycr evolut	of Th ystallii ion –	ne films – Co film stress	s - Classific prrelation be and subst	etween film s rate curvatu	ess – Stress i tress and grai tre – Stoney	n structure -	- Mechanisn	ns of stress	[9]
 measurement – Scanning laser method. MODIFICATION OF SURFACES AND FILMS Introduction – Laser and their Interactions with Surfaces – Laser modification effects and applications – Laser sources and Laser scanning methods - Thermal analysis of Laser annealing Laser surface alloying - Ion implantation effects in solids – Energy loss and structural modification – compositional modification - Ion beam modification phenomena and applications. 						r annealing structural	[9]		
				Total	Hours	•			45
Text E	Book(s)							
-	Techr	nology and A	pplications	,Second Ed	sition technolo lition , Noyes l	Publications	, (1993).	coatings by	Science
			sics of Sur	faces and Inf	terfaces, Sprii	nger Publish	ners (2006).		
Refere									
					Plasmas, Vol			· · ·	
					films Publishe		mic Press Li	mited(1991)	
					erials, (2003).				
4	Hans	Luth, Solid	surfaces, In	terfaces and	l Thin Films' 4	th Edition, S	pringer Publ	ishers (2010))

Course Contents and Lecture Schedule

S.No	Торіс	No. of Hours
1	THIN FILM DEPOSITION TECHNIQUES	
1.1	Introduction – Kinetic theory of gases	1
1.2	Physical vapor deposition techniques	1
1.3	Physics and Chemistry of Evaporation	1
1.4	Thermal evaporation	1
1.5	Pulsed laser deposition	1
1.6	Chemical methods – CVD Thermal and Plasma	1
1.7	Spin and Dip coating	1

1.0	M.Tech.(NST) - Degree Programme 2022-2023	
1.8	Electro plating and Electroless plating	1
1.9	Deposition mechanisms	1
2	CHARACTERIZATION TECHNIQUES	
2.1	Surface analysis techniques	1
2.2	Auger Electron spectroscopy	1
2.3	Photoelectron Spectroscopy	1
2.4	Secondary Ion Mass Spectroscopy	1
2.5	X-ray Energy Dispersive Analysis	1
2.6	Imaging Analysis Techniques SEM, TEM	1
2.7	Optical analysis Techniques	1
2.8	Ellipsometry & Photoluminescence Spectroscopy	2
3	ADSORPTION AND DIFFUSION IN THIN FILMS	
3.1	Physisorption – Chemisorption	1
3.2	Work function changes induced by adsorbates	1
2.2	Two-dimensional phase transitions in adsorbate	1
3.3	layers	'
3.4	Adsorption kinetics – Desorption techniques	1
3.5	Fundamentals of diffusion	1
3.6	Grain Boundary Diffusion	1
3.7	Thin Film Diffusion Couples	1
3.8	Inter Diffusion - Electromigration in thin films	1
3.9	Diffusion during film growth	1
4	STRESS IN THIN FILMS	
4.1	Origin of Thin film stress	1
4.2	Classifications of stress – Stress in epitaxial films	2
4.3	Growth Stress in polycrystalline films	1
4.4	Correlation between film stress and grain structure	1
4.5	Mechanisms of stress evolution	1
4.6	Film stress and substrate curvature	1
4.7	Stoney formula – Methods of curvature	1
4.7	measurement	· ·
4.8	Scanning laser method.	1
5	MODIFICATION OF SURFACES AND FILMS	
5.1	Introduction – Laser and their Interactions with Surfaces	1
5.2	Laser modification effects and applications	1
5.3	Laser sources and Laser scanning methods	1
5.4	Thermal analysis of Laser annealing	1
5.5	Laser surface alloying	1
5.6	Ion implantation effects in solids	1
5.7	Energy loss and structural modification	1
5.8	Compositional modification	1
5.0		
5.9	lon beam modification phenomena and applications.	1

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

60 PNT E21	Nanotribology	Category	L	т	Ρ	Credit
		PE	3	0	0	3

Objective

- To provide the knowledge and importance of tribology
- To understand the principles of lubrication and tailoring surface
- Emphasize the knowledge of scientific disciplines in understanding tribological phenomenon.
- To understand the lubrication fluid mechanism
- To address the applications of tribology

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understanding the basic of tribology.	Remember
CO2	Gain the knowledge about Surface Forces.	Analyze
CO3	Describe about Lubrication, Friction and Wear.	Apply
CO4	Produce effective Mechanical Properties of materials.	Apply
CO5	Explaining about the application of tribology.	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO 3	PO4	PO5	PO6
CO1	3	3	3	2	2	2
CO2	3	3	2	3	2	2
CO3	2	1	3	2	2	1
CO4	2	2	3	2	2	1
CO5	2	3	3	3	3	3

Assessment Pattern

Bloom's Category	Continuous Asses	End Sem Examination	
Bioon s category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyse	10	10	30
Evaluate	10	10	20
Create	10	10	0

	K.S.R	angasamy		Technology		ous Regula	tion		
				E21 - Nanotri					
		-		anoscience a	and Techno	logy			
Semester	F	lours/Wee	k	Total hrs	Credit	Ma	aximum Mark	(S	
Gemester	L	Т	Р	Total III's	С	C	E	Total	
	3	0	0	45	3	40	60	100	
History of t modes of lu lubrication,	brication- hy Extreme pre	gin and S drodynam ssure lub	ic, Hydrostat rication Lubr	of micro/nano tic. Boundary ricants - type oxidation stat	lubrication, s and lubri	elasto hydro cating oils-	odynamic Lubricant	[9]	
Surface Fo Methods us between dry deformation boundary lu	/ surface, for -Surface rou brication- Fa	surface f ce betwee ghness an ilure mech	orces- force n surfaces in d friction for	laws- Surfa liquid- Adhes ce, Adhesion- ical- chemical	sion and cap - Scratching	billary forces , wear and r	, modes of	[9]	
ubricant S ubrication- surface topo	Lubrication ography- Liqu	sity of lub design of iid mediate	typical mech ed contact, in	d film lubrica nanical eleme terfacing tem ic degradatior	ents, transfo perature of s	rmation- Pa	rameter of	[9]	
Scale Effect Nomenclatu effect on su of deformati plastic regir n Tribology	t s in Mecha ire, scale ef fface roughn on-Two body ne- Tailoring	nical Prop fect in me ess and co deformati surfaces:	erties and T chanical pro ntact parame on -Three bo	-	strength, s ffects in frict on- Ratchet	ion – adhesio mechanism,	on. Types elastic to	[9]	
Introduction artificial org	ans- Coating	ibological p application	n - sliding bea	- Bio-Tribolog arings, rolling es-Micro comp	contact- Be	arings, gears turbine.	s, erosion	[9]	
						То	otal Hours	45	
Text Book(-								
				iechanics", Sp	oringer India	, 2012			
		ribology", S	Springer New	v Delhi, 2013.					
Reference(,								
1 Nicho	las D. Spend	er, "Tailori	ng surfaces"	, World Scien	tific IISC Pre	ess, 2011			
2 H.G.	Phakatkar ar	id R.R. Gh	orpade, "Trib	ology", Nirali	publication,	2009			
	at Bhushan. "	Principles	and Applicat	ions to Tribolo	ogy", Wilev I	Publication.	2013		

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	INTRODUCTION TO TRIBOLOGY	
1.1	History of tribology	1
1.2	Significance of nanotribology	1
1.3	Purpose of lubrication	1
1.4	Modes of lubrication	1
1.5	Hydrodynamic and hydrostatic	1
1.6	Boundary lubrication	1
1.7	Extreme pressure lubrication	1
1.8	Types of lubricating oil	1
1.9	Types of additives	1
2	SURFACE FORCES AND MEASURING TECHNIQUES	
2.1	Methods used to study surface forces	1
2.2	Force laws	1
2.3	Surface force apparatus	1
2.4	Force between dry surface	1
2.5	Force between surface in liquid	1
2.6	Adhesion and capillary forces	1
2.7	Modes of deformation	1
2.8	Surface friction	1
2.9	Failure mechanism	1
3	LUBRICATION, FRICTION AND WEAR	
3.1	Lubricant states	1
3.2	Viscosity of lubricants	1
3.3	Fluid film lubrications	1
3.4	Theories of hydrodynamics	1
3.5	Lubrication design	1
3.6	Parameter of surface topography	1
3.7	Liquid mediated contact	1
3.8	Interfacing temperature of sliding surfaces	1
3.9	Types of wear mechanism	1
4	SCALE EFFECTS IN MECHANICAL PROPERTIES AND TRIBOLOGY	
4.1	Nomenclature	1
4.2	Scale effect in mechanical properties	1
4.3	Yield strength and shear strength	1
4.4	Scale effect on surface roughness	1
4.5	Types of deformation	1
4.6	Ratchet mechanism	1
4.7	Elastic to plastic regime	1
4.8	Tailoring surfaces	1

	M.Tech.(NST) - Degree Programme 2022-2023	
4.9	Modifying surface composition	1
5	APPLICATIONS OF TRIBOLOGY	
5.1	Introduction to tribological phenomena	1
5.2	Biotribology	1
5.3	Tribology in human body	1
5.4	Artificial organs	1
5.5	Coating applications	1
5.6	Sliding bearings	1
5.7	Rolling contact	1
5.8	Erosion and scratch resistant	1
5.9	Magnetic reco	1
	Total	45

Course Designers

R. Mohanraj (mohanrajr@ksrct.ac.in)

60 DNT 522	Nanatashnalagy in Automobiles	Category	L	т	Р	Credit
60 PNT E22	Nanotechnology in Automobiles	PE	3	0	0	3

Objective

- To provide exposure to the students on nanotechnology in automobiles.
- To study the various mateials used in automobiles systems and its applications
- To Understand the properties of nanomaterials for nanocoatings.
- To Acquire knowledge about nanosensors in automobiles.
- To Understand the challenges and opportunities of nanotechnology in automobiles.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	To know about the basic concept of nano fuels	Remember
CO2	Understand the world wide status of nano fluids in automobile nanotechnology	Apply
CO3	Evaluation of the interaction of nano fluids in automobiles	Apply
CO4	Identify various nano enabled component in automobile technology	Analyze
CO5	Identify various applications of nanomaterials in automobiles	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Passed in BoS Meeting held on 20/07/2022,

Approved in Academic Council Meeting held on 23/07/2022

M.Tech.(NST) - Degree Programme 2022-2023

Plaamia Catagony	Continuous Assessr	nent Tests (Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyse	10	10	30
Evaluate	10	10	20
Create	10	10	0

	K.S.Ra	<u> </u>	<u> </u>	Fechnology -		<u> </u>	ion	
				technology i				
				noscience ar	1		aximum Marks	
Semester		Hours/Wee		Total hrs.	Credit			
	L	Т	Р		С	C	E	Total
111	3	0	0	45	3	40	60	100
nanoparticles consumption	ngine performa s of Al, Fe and I for Al as compa	Boron in die ared to diese	sel were us Ireduced	ed as fuels- F environmenta	uel consum l impact mat	ption materi erials- effici	suspensions of ials -specific fuel ency of nanofuel sh and affinity or	[9]
NANOFLUIE Synthesis of insulation -h dimension w improvement transfer fluids Microchips M	Nanofluids- me igher operating eight -replaces using Nanoflui s-magnetic Nan licro scale Fluid	g temperatu cast iron k ids - Nanoflu ofluids - Na	re-Reduced block/liner- uids for sola nofluids in F	d friction -su Nanofluids fo ar collectors-	face finish r Sensing <i>A</i> molecular flu	and affinity Applications uid-advance	ofluids - Thermal y or oil-Reduce - Heat transfer ed flow and heat fluids Cooling of	[9]
engine-polyc automotive	materials -Cart arbonate wind	ow-scratch tant paints-	resistant-U Nano-coat	V resistant a tings for engi	and self he	ealing car	-aluminium alloy paints -interior- s windows and	[9]
hydrogen - S position- Oc Driver drows operation-Po	physical - temp afety-Additional cupant Classific iness monitor-N wer door closur	airbags and ation Senso Night vision e sliding/lift	l sensors-Sa ors -Tyre pre –Comfort – –Anti-trap, j	atellite sensin essure monito -Convenience	g modules-F ring sensor- - Passive a	Roll over ser Lane Depa authenticatio	- oxygen and nsing-Occupant rture Warning - on-Door handle re and humidity	[9]
Improving fue nanostructur	•	nce of future nprove fuel	generations efficiency -		•		ydrogen sensors lectro chromatic	[9]
			Total	Hours				45
Reference(s):							
A	bao Paulo Carm utomotiveEngin	eering", ISE	N 978-953-	<u>-51-0698-2, P</u>	ublished: Au	igust 1, 201	2	
2 3), 2013)						Science Pub Inc (June
3 M	ichael Berger."	Nanotechno	ology in the	automotive in	dustry" Cop	yright Nano	werk 2010	

M.Tech.(NST) - Degree Programme 2022-2023 Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	NANOFUELS	
1.1	Introduction to nanofuels	1
1.2	Engine performance and emission burning characteristics.	1
1.3	Stable suspension of different nanoparticles	1
1.4	Environmental impacts of nanomaterials	1
1.5	Efficiency of nanofuel materials	1
1.6	Nanostructured lubricants	1
1.7	Reduced frictional loss	1
1.8	Surface finish and affinity	1
1.9	Fuel consumption of different materials	1
2	NANOFLUIDS	
2.1	Synthesis methods of nanofluids	1
2.2	Smart cooling nanofluids	1
2.3	Different properties of nanofluids	1
2.4	Thermal insulation of nanofluids	1
2.5	Nanofluids for sensing applications	1
2.6	Heat transfer improvements using nanofluids	1
2.7	Nanofluids for solar collectors	1
2.8	Advanced flow and heat transfer nanofluids	1
2.9	Nanofluid cooling of microchips	1
3	NANOCOATINGS	
3.1	Introduction to nanocoatings	1
3.2	Carbon based nanostructured materials	1
3.3	Vehicle weight reduction methods	1
3.4	Aluminium alloy engines	1
3.5	Scratch resistant and UV resistant	1
3.6	Self healing car paints and automative paints	1
3.7	Nanocoating for engine applications	1
3.8	Nanocoating in automative textiles.	1
3.9	Nanoparticle fillers for tires	1
4	NANOSENSORS	
4.1	Physical, temperature and acceleration sensors.	1
4.2	Additional air bags and sensors	1
4.3	Satellilte sensing modules	1
4.4	Roll over sensor and occupant positioning sensor	1
4.5	Tyre pressure monitoring sensor	1
4.6	Lane departure warning system	1
4.7	Driver drowsiness monitor	1
4.8	Passive authentication and door handle operation system	1
4.9	HVAC temperature and humidity sensor	1
5	CHALLENGES AND OPPORTUNITIES	
5.1	Improving fuel cell performance	2

	M.Tech.(NST) - Degree Programme 2022-2023	
5.2	Future generations of hydrogen powered cars	1
5.3	Flexible hydrogen sensor	1
5.4	Improving fuel efficiency	1
5.5	Polymer glazing	1
5.6	Fuel cell and solar cell	1
5.7	Electrochromatic layers	1
5.8	High performance automobile systems	1
5.9	Different opportunities of nanotechnology in automobiles	1
	Total	45
n		

Course Designers

R. Mohanraj (mohanrajr@ksrct.ac.in)

60 PNT E23 CORROSION ENGINEERING PE 3 0 0 3	60		CORROSION ENGINEERING	Category	L	Т	Ρ	Credit
	60	PNI E23	CORROSION ENGINEERING	PE	3	0	0	3

Objective

- To study the basic principle corrosion
- To understand the different form of corrosion.
- To explore the corrosion testing &monitoring.
- To minimize & prevent the corrosion.
- To study the corrosion control in industries

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Identify the types, mechanism, and factors influencing corrosion and describe its control measures	Analyze
CO2	Recognize types and theories of chemical bonding.	Understand
CO3	Review the types of chemical reactions	Analyze
CO4	Imbibe the concepts of chemical equilibrium.	Apply
CO5	Analyze and assess theory of adsorption and its applications.	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	3
CO2	3	3	3	3	2	3
CO3	3	3	2	3	3	3
CO4	3	3	2	3	3	3
CO5	3	3	2	3	3	3

Assessment Pattern

Bloom's Category	Continuous Assessn	End Sem Examination	
BIOOIII'S Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	30
Apply	10	10	40
Analyse	10	10	20
Evaluate	10	10	0
Create	10	10	0

	K.S.F			Technology			tion		
	60 PNT E23 - Corrosion Engineering Department of Nanoscience and Technology								
	Hours/Week Credit Maximum Marks								
Semester	L	T	` Р	Total hrs.	Credit	C	E	Total	
	3	0	0	45	3	40	60	100	
Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty m									
	•			ding upon the	•				
			•	ainst each ur	•	•			
	to Corrosior			,	,				
Chemical a	and electroo	chemical c	orrosions-	mechanism o	of electroch	nemical and	d galvanic		
corrosions-	concentratio	n cell corro	sion- passiv	ity-Pourbaix d	liagram- soil	, pitting, inte	er-granular,	[9]	
			•	s- galvanic se	-		-		
measureme	nt of corrosi	on rate.		-		-			
DIFFEREN	T FORMS O	F CORROS	ION						
•		•	•	ranular, stres				[9]	
	•		-	id mechanism	with specifi	c examples.			
	ON TESTING								
				ods: weight los			olarization	[9]	
			emi plant & f	ield tests, sus	ceptibility te	st.			
	N PROTEC		rragion pro	wontion through	iah dooian	opotingo	inhihitoro		
		-	•	vention throu rotection, spe		-		[9]	
corrosion co	•	ion-cathouid	, anouic p	rotection, spe	cinc applica	alions, ecor			
	N & ITS CO								
		-		, marine and	t fertilizer i	ndustries S	Some case		
			• •	gineering mat				[9]	
				nposites and				[9]	
• •	Corrosion ma				p ,	• • • • • • • • • • • • • • • • • • • •			
		<u> </u>	Total	Hours				45	
Reference(s):								
	•	iologically I	nfluenced co	orrosion, Wile	v-Interscien	e (2007)			
				opean Federa			y Pub.(2000).	
3. Denn	y A Jones,P	rinciples an	d Preventior	of Corrosion	(second ed	ition),Prentio			
4. H.Vid	ela, J. F. Wi	lkes, R.A.Si	lva, Manual	of Biocorrosic	on, CRC Pre	ess (1996).			

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	PRINCIPLES OF CORROSION PHENOMENON	
1.1	Define corrosion	1
1.2	Introduction to Thermodynamics and kinetics	1
1.3	Emf series	1
1.4	Galvanic series	1
1.5	Pourbaix diagram	1
1.6	exchange current density	1
1.7	Passivity	1
1.8	Evans diagram	1
1.9	flade potential	1
2	DIFFERENT FORMS OF CORROSION	
2.1	Atmospheric corrosion	1
2.2	Uniform corrosion	1
2.3	Pitting crevice	1
2.4	Intergranular	1
2.5	Stress corrosion	1
2.6	Corrosion fatique	1
2.7	Dealloying	1
2.8	High temperature oxidation-origin	1
2.9	High temperature oxidation -mechanism with specific examples	1
3	CORROSION TESTING AND MONITORING	
3.1	Non-Electrochemical methods	1
3.2	Electrochemical methods	1
3.3	Corrosion weight loss method	1
3.4	Tafel Linear polarization	1
3.5	Impedance techniques	1
3.6	Corrosion lab test	1
3.7	Corrosion test in semi plant	1
3.8	field tests	1
3.9	susceptibility test	1
4	CORROSION PROTECTION	
4.1	Corrosion prevention through design	1
4.2	Corrosion prevention through design	1
4.3	Corrosion coatings	1
4.4	Corrosion inhibitors	1
4.5	Cathodic protection	1
4.6	Cathodic protection application	1
4.7	Anodic protection	1
4.8	Specific applications	1
4.9	economics of corrosion control	1
5	CORROSION & ITS CONTROL IN INDUSTRIES	
5.1	Power, Process	2
5.2	Petrochemical, ship building, marine and fertilizer industries	1

M.Tech.(NST) - Degree Programme 2022-2023

	M.Tech. (NST) - Degree Programme 2022-2023				
5.3	Some case studies-Corrosion and its control in different engineering materials	1			
5.4	Concrete structures, duplex, super duplex stainless steels	1			
5.5	Ceramics, composites	1			
5.6	Polymers	1			
5.7	Corrosion auditing in industries	1			
5.8	Corrosion map of India	1			
	Total	45			

Course Designers

Dr.A. Karthik - karthik@ksrct.ac.in

60 PNT E24	Nano safety and	Category	L	т	Р	Credit
00 PN1 E24	Environmental Issues	PE	3	0	0	3

Objective

- To study the need of safety and environmental issues
- To understand the concept of Nanotoxicology.
- To Identify the basic types of Analytical Methods
- To learn the ethics and applications of nanotechnology in industry
- To understand the different challenges in applications.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	To understand the specific challenges for nanomaterials	Analyze
CO2	Understand the Challenges in Nanotoxicological management.	Understand
CO3	Identify the basic types of Analytical Methods	Analyze
CO4	Discuss the applications of nanotechnology in industry.	Apply
CO5	Analyze the different challenges in applications	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	3
CO2	3	3	2	3	3	3
CO3	3	2	3	3	3	3
CO4	3	3	3	3	3	3
CO5	3	3	3	2	3	3

Assessment Pattern

Plaam'a Catagony	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	30
Apply	10	10	20

Passed in BoS Meeting held on 20/07/2022,

Approved in Academic Council Meeting held on 23/07/2022

M.Tech.(NST) - Degree Programme 2	2022-2023
-----------------------------------	-----------

Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	0

	K.S.	Rangasamy	College of	Technology	- Autonom	ous Regula	ition		
				afety and En					
	Department of Nanoscience and Technology								
0		Hours/Weel			Credit		aximum Mar	ks	
Semest	er L	Т	Р	Total hrs.	С	С	E	Total	
	3	0	0	45	3	40	60	100	
Note: Ho	ours notified ag	ainst each u	nit in the sy	labus are only	y indicative	but are not o	decisive. Fac	ulty may	
decide th	e number of h	ours for each	n unit depen	ding upon the	concepts a	nd depth. Q	uestions nee	d not be	
	used on the nu	mber of hour	s notified ag	jainst each un	it in the syll	abus.			
INTROD									
	ition of Nano -								
	uction – Stan							[9]	
	ent –Environn							[0]	
	ent related t						Ecotoxicity		
	ment of Polych	nlirinated bipl	henyl and in	termediates ir	n their degra	adation			
	DXICOLOGY								
	n of nanomat								
	e of Insoluble S							[9]	
	d Particles. F								
	s In Vivo - Inter		umonary ini	iammation with	in oxidative	stress – inte	eractions of		
	s with Macroph MENTAL ISSU								
	ticle exposure	-	atic cardiova	scular offects	evnerim	antal data	respiratory		
	te matter exposure								
	approaches.							[9]	
	o their applicat								
	ement of indo				anough ano				
ETHICS				j :					
	or regulations,	training and	education for	or health prote	ection and e	nvironment	al securitv		
	echnologies –							101	
	practice - pc							[9]	
nanotech	nology. Bioetl	hics and leg	al aspects	of potential h	ealth and e	nvironment	al risks in		
nanotech	nology – Lega	al regulatory of	consideratio	ns of nanotec	hnology.				
CHALLE	NGES AND F	UTURES							
	nnology – the f								
	oxicity – Worke							[9]	
	ducation – Pu	blic informati	on. Occupat	tional risk ass	essment an	d managem	ent – focus		
on Nano	materials.								
			Total	Hours				45	
Referen		<u>N 0 1</u>				· · · ·			
I. Er	P. Simeonova, wironmental S	afety", Spring	ger 2006.		••	-			
Z. &	hod Labhasetw son Inc,NJ, US	SA, 2007 .							
	yawaki, J.; <i>et.a</i>								
	itchison, J. E. plications of N					ancing App	lications and	Reducing	

Course Content and Lecture Schedule

S. No	M.Tech.(NST) - Degree Programme 2022-2023 Topic	No. of Hours
1	INTRODUCTION	
1.1	Identification of Nano - Specific Risks	1
1.2	Responding to the Challenge	1
1.3	Human health hazard – Risk reduction	1
1.4	Standards – Safety – transportation of NP	1
1.5	Emergency responders. Risk assessment –Environmental Impact	1
1.6	Predicting hazard	1
1.7	Materials Characterization. Risk Assessment related to nanotechnology	1
1.8	Environmental and policy making	1
1.9	Ecotoxicity measurement of Polychlirinated biphenyl and intermediates in their degradation	1
2	NANOTOXICOLOGY	
2.1	Inhalation of nanomaterials – Overview	1
2.2	Introduction of Inhalation deposition and Pulmonary	1
2.3	Inhalation deposition and Pulmonary clearance of Insoluble Solid	1
2.4	Bio –persistence of Inhaled solid material	1
2.5	Systemic Translocation of inhaled Particles	1
2.6	Pulmonary effects of SWCNT	1
2.7	Pulmonary Inflammatory Responses to SWCNTs In Vivo	1
2.8	Interactions of pulmonary Inflammation with oxidative stress	1
2.9	Interactions of SWCNTs with Macrophages	1
3	EXPERIMENTAL ISSUES	
3.1	Nanoparticle exposure and systematic cardiovascular effects	1
3.2	Experimental data – respiratory particulate matter exposure and cardiovascular toxicity	1
3.3	Nanoparticles – Hypothesis	1
3.4	Nanoparticles – research approaches	1
3.5	SWCNT – Experimental data	1
3.6	Toxicity of polymeric nanoparticles with respect to their application as drug carriers	1
3.7	Particle exposure through the indoor air environment	1
3.8	Measurement of indoor of PM	1
3.9	Experimental study of indoor of PM	1
4	ETHICS	
4.1	Needs for regulations, training and education for health protection	1
4.2	Environmental security of nanotechnologies	1
4.3	Definitions and essence – general benefits	1
4.4	Benefits for health and medical practice	1
4.5 4.6	Potential risks The approaches to assessment of exposure to the	1
4.7	nanotechnology. Bioethics of potential health and environmental risks in	1
4.8	nanotechnology Legal aspects of potential health and environmental risks in	1
4.9	nanotechnology	1
4.9 5	Legal regulatory considerations of nanotechnology CHALLENGES AND FUTURES	
		-
5.1	Nanotechnology – the frame of worker training	2
5.2	Public education, and participation	1
5.3	Introduction – Nanotoxicity	1
5.4	Workers protection	1

	M.Tech.(NST) - Degree Programme 2022-2023					
5.6	protection of medical staff – Nurses education , Public information	1				
5.7	Occupational risk assessment and management	1				
5.8	Focus on Nanomaterials	1				
	Total	45				

Course Designers

Dr.T.Baranidharan

- baranidharan@ksrct.ac.in

60 PNT E25	Micro and Nano Electro	Category	L	т	Р	Credit
60 PNT E25	⁵ Mechanical Systems	PE	3	0	0	3

Objective

- To impart the knowledge about the synthesis of nano structured semiconducting materials.
- To understand the basic about semiconducting properties of nanomaterials
- To impart the knowledge on the semiconductor nanodevices
- To understand concepts and principles of MEMS and NEMS
- To learn the basic and commercial applications of the Nanostructured materials.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Distinguish the properties between bulk and Nano-Semiconductors	Analyze
CO2	Learn the various Components and structure of Nano Semiconductors	Understand
CO3	Know the Advantages and Disadvantages of Nanostructured Semiconductors	Analyze
CO4	Analyze the concept of quantum confinement effect	Analyze
CO5	Distinguish the type of Nanostructured semiconductors	Analyze
	111 Berner 0. (

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	2
CO2	2	2	3	3	2	2
CO3	2	3	2	3	2	2
CO4	3	2	2	2	2	3
CO5	2	2	2	2	3	3

Assessment Pattern

Bloom's Cotogony	Continuous Asses	End Sem Examination					
Bloom's Category	1	2	(Marks)				
Remember	10	10	10				
Understand	10	10	10				
Apply	10	10	20				
Analyse	10	10	30				
Evaluate	10	10	20				
Create	10	10	10				

Passed in BoS Meeting held on 20/07/2022,

Approved in Academic Council Meeting held on 23/07/2022

	K.S.F	Rangasamy	College o	of Technology –	Autonomo	ous R 2022				
	60			Nano Electro M						
PNT : M.Tech – Nano Science and Technology Hours / Week – Credit Maximum Marks										
Semest	er Ho	ours / Week		Total hrs.	Credit		ks Total			
	L	Т	Р		C CA ES					
	3	0	0	45	3	40	60	100		
MEMS In Processir	ig – Mask – Deve	loping – Etcl	hing - Ŕoa	nd Disposability - ld Map and Persp or – Doping - Add	ective Silico	on Substrat		[9]		
Photolitho with Resi Proximity	st – Applying Pho	- Clean roon oto Resist - E ting - Develo	n - Photo I xposure a pment an	Resist - Positive F and Pattern Trans d Post Treatment	sfer - Printir	ig Methods	- Contact-	[9]		
Introducti		erties - Bene		nomachines – Mi /IS devices - NEM			Memory –	[9]		
Materials – Simulat		pes - Carboi ion Techniqu	n Based N Jes - Curr	EMS /aterials - Metalli ent Challenges a				[9]		
Pressure Gyroscop Switching	e – Optical MEM	esistive sens S - Digital Mi IEMS switch	icro mirror	icitive sensor – Ir Device - Precisio IS Resonators –	on Optical P	latform - O	ptical Data	[9]		
							Total h	ours: 4		
Referenc		<u></u>								
^{8.} 20′	4			roductory MEMS				-		
y .	-Ran Hsu, "MEM 2013.	S & MICRO	SYSTEM	S Design and Ma	nufacture"	McGraw Hi	ill Education	PVT		
10. Ra	-Choudhury "ME	MS and MO	EMS Tech	nology and Appl	ications" Pl	H Learning	g PVT Ltd 201	2		
11. Bhi	ushan.B "MEMS/)7	NEMS and	Bio MEM	S/NEMS" Springe	er Handboo	ok of Nano	technology			

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	Fundamentals of MEMS	
1.1	MEMS Introduction	1
1.2	Low Cost	1
1.3	Redundancy and Disposability	1
1.4	Scaling ,Made Substrates	1
1.5	Processing ,Mask and Developing	1
1.6	Road Map and Perspective Silicon Substrate	1
1.7	Silicon Growth Crystal - Miller Indices	1
1.8	Semiconductor Doping	1
1.9	Additive Techniques	1
2	Fabrication and Pattern Transformation of MEMS	
2.1	Photolithographic Process	1
2.2	Clean room	1
2.3	Photo Resist - Positive Resist , Negative Resist	1
2.4	Working with Resist – Applying Photo Resist	1
2.5	Exposure and Pattern Transfer Printing Methods	1
2.6	Contact Proximity and Projection Printing	1
2.7	Development and Post Treatment Masks and Resolution	1
2.8	Sensitivity and Resist Profiles	1
2.9	Mask Alignment and Permanent Resists.	1
	Fundamentals of NEMS NEMS	
	Introduction	1
-	Basic properties Benefits of Nanomachines	1
0.0		1
0.1	Miniaturization	1
	NEMS Memory	1
	Importance of AFM	1
	Top-Down Approach NEMS devices	1
0.0		1
	NEMS Advantages. Fabrication and Pattern Transformation of NEMS	1
-	Materials	1
	Carbon Allotropes	1
	Carbon Based Materials	1
4.0	Metallic Carbon Nanotubes	1
	Difficulties, Simulations	1
	Transduction Techniques, Current Challenges and future of NEMS	1
-	Deposition processes	1
	Lithography	1
		1
		1
-		1
0.1		1
5 5.1	Etching processes. Applications of MEMS and NEMS Pressure sensor Piezoresistive sensor, Capacitive sensor	

5.3	Inertial sensor , Accelerometer	1
5.4	Gyroscope, Optical MEMS	1
5.5	Digital Micro mirror Device, Precision Optical Platform	1
5.6	Optical Data Switching, RF MEMS	1
5.7	MEMS switches	1
5.8	MEMS Resonators	1
5.9	Nano electro mechanical (NEM) relay – Fabrication, Operation.	1
	Total	45

Course Designers

Dr.T.Baranidharan

- baranidharan@ksrct.ac.in

	Nonotochnology in Inductor	Category	L	т	Р	Credit
60 PNT E26	Nanotechnology in Industry	PE	3	0	0	3

Objective

- To understand the fundamental concept of contacting industrial concepts
- To study the basics structure about industrial based nanotechnology development
- To acquire knowledge of Nanotechnology In Industrial Production & Manufacturing
- To learn the Environmental, Health & Safety Issues
- To understand the industrial concepts in nanotechnology

Prerequisite

Basics of industry applications

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the basics concept of industrial requirements	Remember
CO2	Address about the surface interaction of micro and nanoscale object	Analyze
CO3	Explain the fundamental theories and experimental effects of Nanotechnology	Apply
CO4	Illustrate the experimental mechanical characterization of nanomaterials	Analyze
CO5	Distinguish the applications of nanotechnology in various industrials.	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern									
Bloom's Category	Continuous Ass	essment Tests (Marks)	End Sem Examination						
BIOOTT'S Category	1	2	(Marks)						
Remember	10	10	10						
Understand	10	10	10						
Apply	10	10	30						
Analyze	10	10	30						
Evaluate	10	10	20						
Create	10	10	10						

M.Tech.(NST) - Degree Programme 2022-2023

		K.S.R	Rangasam	y College of	Technology	- Autonom	ous Regula	ation		
			60	PNT E26 – N	lanotechnolo	gy in Indus	stry			
			Depa	artment of N	anoscience a	and Techno	ology			
Seme	octor	ŀ	lours/Wee	k	Total hrs.	Credit	M	aximum Mar	ks	
Seme	ster									
	I	3	0	0	45	3	40	60	100	
Nanot care,	techno Nanote	logy in Cons echnology ir	umer Prod n Electronio	cs - Automot	HNOLOGY ry – Textiles – bile – National d biological we	Security –			[9]	
THER Thern Radia perfor Auton wind a	RMAL I nal Ins int bar mance nobile- and so	NSULATIO ulation- Insu riers- Moist e Energy Sa -Planning re lar – Micro h	N AND EN ulation Wo ure Contro avingEn enewable s nydropowe	IERGY SAVI rks - R – Va ol Ventilation ergy Design systems Sola		of Insulation requirement y –Electricit	ts- Factors y & Fuel, I	influencing Electronics-	[9]	
Mater excha House	ial flov inges a	and by produ es (GHG)-L	cal manufa ict synergie	es - Lead End	ustrial parks - capsulation- R & Environmer	educe Carb	on Footprint	and Green	[9]	
Nanol detec Nano	techno tion-Ri crystals	logy in Cor sks in const	nstruction ruction. Na	-Cement-Ste anostructured	UCTION & Ma eel-Wood-Glas d materials in s -Nanocompo	ss-Coatings Manufacturi	Fire Prot ing- Nanoco	mposites –	[9]	
Econo Issue: Nanol Driver	omic Ir s- So techno s, Cha	npacts & C cial & Eth logy on Pro	ommercial ical Impli ductivity, S	ization of Na cations, Ind Sustainability,	CONCERNS anotechnology ustrial Appro and Equity-T on Of Nanoted	ach- Susta he Emergin	aining the Ig Nano Eco	Impact of onomy: Key	[9]	
							Т	otal Hours	45	
Fext	Book(s	6)								
1		echnology: ger publication		plications, M	ihail C. Rocco	and Willian	n Sims Bain	bridge Publis	her:	
2	Nanot	echnology t	he Social &	& Ethical Issu	ies, Ronald sa	andler Publis	sher: Woodr	ow Wilson 20	15	
	ence(s	,								
1					Publisher: W					
2	Limite	d, Cambridg	,	"Nanofibers	and Nanotech	nnology in T			shing	
_			,							
3		A.R., Daniel ation, India,2	Ratner, "N	lanotechnolo	gy: A Gentle I	Introduction	to the Next	Big Idea", Pe	arson	

M.Tech.(NST) - Degree Programme 2022-2023 Course Contents and Lecture Schedule

S.No	-	No. of
		Hours
1	INDUSTRIAL APPLICATIONS OF NANOTECHNOLOGY	
1.1	Nanotechnology in Consumer Products Inventory – Textiles	1
1.2	Cosmetics	1
1.3	Paint and Sports	1
1.4	Health care industry	1
1.5	Nanotechnology in Electronics	1
1.6	Automobile Industry	1
1.7	National Security	1
1.8	Defense – camaflaudge nuclear weapon	1
1.9	Space launcher- chemical and biological weapons	1
2	THERMAL INSULATION AND ENERGY SAVINGS	
2.1	Thermal Insulation	1
2.2	Insulation Works	1
2.3	R –Values, Types of Insulation	1
2.4	Insulation Materials, Radiant barriers	1
2.5	Moisture Control Ventilation, Calculating requirements	1
2.6	Factors influencing performance, Energy Saving	1
2.7	Energy Design for efficiency – Electricity & Fuel,	1
2.8	Electronics, Automobile, Planning renewable systems Solar electric systems	1
2.9	Wind electric systems, Hybrid wind and solar, Micro hydropower systems	1
3	INDUSTRIAL ECOLOGY	
3.1	Material flows in chemical manufacturing	1
3.2	Industrial parks	1
3.3	Assessing opportunities for waste exchanges and by product synergies	2
3.4	Lead Encapsulation	1
3.5	Reduce Carbon Footprint and Green House Gases (GHG)	1
3.6	Leadership In Energy & Environmental Design	1
3.7	LEED For Buildings	1
3.8	LEEDs in Home, Schools	1
4	NANOTECHNOLOGY IN INDUSTRIAL PRODUCTION & MANUFACTURING	
4.1	Nanotechnology in Construction	1
4.2	Cement-Steel-Wood-Glass-Coatings	1
4.3	Fire Protection and detection	1
4.4	Risks in construction	1
4.5	Nanostructured materials in Manufacturing	1
4.6	Nanocomposites	1
4.7	Nanocrystals- Nano clays and nanocomposites	1
4.8	Nanocomposite coatings	1
4.9	Nanotubes, Nano catalysts, Nano filters	1
5	INDUSTRIAL LAWS AND ENVIRONMENTAL CONCERNS	
5.1	Economic Impacts & Commercialization of Nanotechnology	1
5.2	Environmental, Health & Safety Issues	1
5.3	Social & Ethical Implications	1
5.4	Industrial Approach- Sustaining the Impact of Nanotechnology on Productivity	1
5.5	Sustainability and Equity	1

	M.Tech.(NST) - Degree Programme 2022-2023	
5.6	The Emerging Nano Economy	1
5.7	Key Drivers, Challenges & Opportunities	1
5.8	Regulation Of Nanotechnology In Consumer Products	1
5.9	Legal Policy Issues	1
	Total	45

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

60 DNT 524 6	Social Impact of Nanotechnology	Category	L	т	Ρ	Credit
60 PNT E31	Social impact of Nanotechnology	PE	3	0	0	3

Objective

- To help the learners to understand the challenges of synthesis nano materials
- To provide an overview of the Challenges in Storage and fabrication
- To familiarize learners with Challenges in Nanotoxicological management
- To familiarize the learners Challenges in health care and biomedical area
- To enlighten the learners to understand various methods, materials and it applications

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the emerging ideas of challenges of synthesis of nanomaterials	Remember
CO2	To understand the specific challenges for nanomaterials	Apply
CO3	Describe the Challenges in Storage	Analyze
CO4	Recognize the Challenges fabrication of nanomaterials	Apply
CO5	Understand the Challenges in Nano toxicological management	Analyze

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

M.Tech.(NST) - Degree Programme 2022-2023

Plaam'a Catagony	Continuous Assessr	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	20
Evaluate	10	10	20
Create	10	10	10

Assessment Pattern

	K.S.R	-		Technology			ation	
				al Impact of anoscience a				
	H	ours/Wee			Credit		aximum Mar	ks
Semester	L	T	P	Total hrs.	C	C		
	3	0	0	45	3			Total 100
Protocols	in Nanomate	rials	I	1				
Challenge	s - Green synt	hesis of N	anoparticles	- Iron Oxide N	lanoparticle	s -Critical n	eeds and	101
Significant	- Developmer	nt and Pote	ential Impact	of Microfluidio	Systems o	n Different	Steps -	[9]
Specific C	hallenges-Nar	omaterial	s Design – Sy	nthesis of Na	nomaterials	S.	-	
Fabricatio	n and Storag	e of Nanc	omaterials					
Challenge	s in fabricatior	s - Nano d	composites T	hin Films -Su	face Energ	y-Surface A	rea -Size,	
	ze Distributior	•			•	•		[9]
Microstruc	ture-Nanomat	erials-Soli	d State Hydro	ogen Storage-	Lithium Ba	sed Rechar	geable	
Batteries.								
	cological Mai							
Toxicant A	nalysis and Q	uality Assi	urance Princi	ples – Genera	al Policies R	elated to A	nalytical	
	es – Standard	• •		• •				[0]
Manuals –	Analytical Met	hods Files	s – Laboratory	y Information	Managemer	nt System (LIMS) –	[9]
•	Measurement	System -	Quality Assu	rance (QA) P	rocedures –	Quality Co	ntrol (QC)	
Procedure	-							
	in Health car							
-	s - Understand	-		-				[9]
-	Molecular Ma			•			r - Air -	[9]
	gradableandB	•	•		cularChaller	nges.		
•	tation of Nan		•••					
	fecting of The	•				•		[9]
-	nvolved in Imp				-		ortunities	[0]
and Challe	nges – Critica	I Success	Factor - Nan	o Regulating	Mechanism			
							Total Hours	45
Textbook								
I. Gro	uya Tsuzuki "N up, 2013.							
Z. Stor	ertA.Varin, To age" springer,		ujko, Zbigniev	v S. Wronski"	Nanomater	ials for Soli	d State Hydro	gen
Reference	. /							
	id A Dana "Th est Hodgson "/							

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	PROTOCOLS IN NANOMATERIALS	
1.1	Challenges - Green synthesis of Nanoparticles	1
1.2	Iron Oxide Nanoparticles	1
1.3	Critical needs and Significant	1
	Development and Potential Impact of	4
1.4	Microfluidic Systems on Different Steps	1
1.5	Specific Challenges	1
1.6	Nanomaterials Design	1
1.7	Synthesis of Nanomaterials	1
2	FABRICATION AND STORAGE OF NANOMATERIALS	
2.1	Challenges in fabrications – Nanocomposites	1
2.2	Thin Films – Surface Energy	1
2.3	Surface Area - Size, Uniform Size Distribution	1
2.4	Morphology – Crystallinity	1
2.5	Chemical Composition	1
2.6	Storage	1
2.7	Microstructure	1
2.8	Nanomaterials – Solid State Hydrogen Storage	1
2.9	Lithium Based Rechargeable Batteries	1
3	NANOTOXICOLOGICAL MANAGEMENT	
3.1	Toxicant analysis	1
3.2	Quality assurance principles	1
3.3	General policies related to analytical laboratories	1
3.4	Standard operating procedures (SOPs)	1
3.5	QA/QC Manuals – Procedural Manuals	1
3.6	Analytical Methods Files	1
3.7	Laboratory Information Management System (LIMS)	1
3.8	Analytical Measurement System	1
0.0	QualityAssurance(QA), Procedures-	
3.9	QualityControl(QC) Procedures	1
4	PROTOCOLS IN HEALTH CARE AND BIOMEDICAL AREA	
4.1	Challenges	1
4.2	Understanding Environmental and Biological Impacts of Nanoparticles	1
4.3	Self Assembly	1
4.4	Molecular Manufacturing	1
4.5	Nanoparticle Safety - Pesticides - Food - Water - Air – Soil	1
4.6	Biodegradable Biocompatible	2
5	IMPLEMENTATION OF NANOTECHNOLOGY	
5.1	Effecting of The Implementation-	1
5.2	Role of Advanced Technology In Implementation	1
5.3	Strategic involved in implementation	1
5.4	Commercialization Challenges	1
5.5	Market opportunities and challenges	1
5.6	Critical success factor	2
5.7	Nano regulating mechanism	2
	Total	45

Course Designers

Dr.S.Satheeskumar

- satheeskumars@ksrct.ac.in

60 PNT E32	Computer Modeling and	Category	L	т	Р	Credit
60 PNT E32	Simulation	PE	3	0	0	3

Objective

- To study the basic computation methods
- To understand the modeling analysis.
- To study the Boundary analysis.
- To introduced various system modeling & mathematical approaches simulation techniques
- To highlight the different application areas.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Relate the appropriate characteristics of nanoparticles by correlating the theoretical	Understand
CO2	Draw the modeling and simulation of a digital control design approach.	Apply
CO3	Analyze various problem solving techniques with categories of software	Analyze
CO4	Discuss the monte - carlo simulation of particles in a Box - Diffusion using Matlab.	Apply
CO5	Recognize the generation and application of computers	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	2
CO2	2	3	3	3	3	3
CO3	3	3	3	2	3	3
CO4	3	3	2	3	3	3
CO5	3	3	2	3	3	3

Assessment Pattern

Bloom's Cotogony	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	20
Analyse	10	10	30
Evaluate	10	10	20
Create	10	10	10

	K.S.F	Rangasamy	/ College of	Technology	- Autonom	ous Regula	tion	
				outer Modelin				
		Depa	rtment of N	anoscience a	and Techno	logy		
Semester	ŀ	lours/Wee	k	Total hrs.	Credit	Ма	aximum Mar	ks
Jemester	L	Т	P	Total III's.	С	С	E	Total
	3	0	0	45	3	40	60	100
-	ordinary diffe	-		value and bo	undary valu	e problems.		[9]
	on, Functions			lationship of d pment of rig				[9]
BOUNDARY ANANLYSIS Solution of partial differential equations, Initial value and boundary value problems, Hyperbolic, parabolic and elliptic equations, Explicit and Implicit methods, Finite difference methods. Finite element method.						[9]		
SIMULATI Survey of	-	chniques, I	Molecular dy	namics and	Monte- Carl	o simulatio	ns. Fuzzy	[9]
Logic, neu	al networks a	and genetic	algorithms.					
APPLICA Applicatior		model mate	rials behavio	or and metallu	rgical proce	sses.		[9]
			Total	Hours				45
Reference	(s):							
1. meta	•			be, The math	ematical and	l physical m	odeling of pr	imary
				e mathematics	s Library, Mi	ſ		
3 Raja		and Pai, G.A		Networks, Fuz			gorithms synt	hesis an

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	REVIEW OF COMPUTATIONAL METHODS	
1.1	Basics of ordinary differential equations	1
1.2	Basics of ordinary differential equations	1
1.3	Solution of ordinary differential equations	1
1.4	Review of Initial value problems	1
1.5	Solve Initial value problems	1
1.6	Review of boundary value problems	1
1.7	Solve boundary value problems	1
1.8	Relate the appropriate characteristics of nanoparticles by correlating the theoretical	1
1.9	Review of Computational Methods	1
2	MODELING	
2.1	Introduction to modeling analysis	1
2.2	Classification	1
2.3	Functions	1
2.4	Limitations of different types of models	1

	M.Tech.(NST) - Degree Programme 2022-2023	
2.5	Interrelationship of different types of models	1
2.6	Types of mathematical model	1
2.7	Development of mathematical model	1
2.8	Development of rigorous physical models	1
2.9	Development of semi rigorous physical models	1
3	BOUNDARY ANANLYSIS	
3.1	Solution of partial differential equations	1
3.2	Initial value problems	1
3.3	boundary value problems	1
3.4	Hyperbolic	1
3.5	parabolic and elliptic equations	1
3.6	Explicit methods	1
3.7	Implicit methods	1
3.8	Finite difference methods	1
3.9	Finite element method	1
4	SIMULATION	
4.1	Survey of simulation techniques	1
4.2	Molecular dynamics simulation	1
4.3	Basics of Fuzzy Logic	1
4.4	Basics of neural networks	1
4.5	Basics of genetic algorithms	1
4.6	Monte- Carlo simulations	1
4.7	Fuzzy Logic simulation techniques	1
4.8	Neural networks simulation techniques	1
4.9	Genetic algorithms simulation techniques	1
5	APPLICATIONS	
5.1	Molecular dynamics simulation to model material	2
5.2	Monte- Carlo simulations to model material	1
5.3	Fuzzy Logic simulation techniques to model material	1
5.4	Neural networks simulation techniques to model material	1
5.5	Genetic algorithms simulation techniques to model material	1
5.6	Behavior process	1
5.7	Metallurgical processes	1
5.8	Application of behavior and metallurgical processes	1
	Total	45

Course Designers

Dr.T.Baranidharan - <u>baranidharan@ksrct.ac.in</u>

60 DNT E22	Nanotechnology in Defense and	Category	L	т	Р	Credit
60 PNT E33	Security	PE	3	0	0	3

Objective

- To provide exposure to the students on nano science and technology in defence activities
- To explore various nanomaterials used in multifunctional systems and applications.
- To enlighten the learners to understand various applications areas of nanomaterials
- To understand Nano rods based chemical sensors for underwater applications.
- To study about the potential applications of Nanotechnology in defence activities

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Observe the military applications of nanotechnology in various propellants and explosives.	Remember
CO2	Develop protection the Satellites against Missile Attacks using quantum dots.	Create
CO3	Analyze the nanotechnology usage in Camouflage, Stealth, Ablative Applications.	Analyse
CO4	Address different applications of sensors with the use of Nano-enabled sensors.	Analyse
CO5	Acquire knowledge of Nanotechnology in safety and environment applications	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	3	2
CO2	2	3	2	3	2	1
CO3	3	2	3	2	2	2
CO4	3	2	3	2	3	2
CO5	2	2	2	3	2	3

Assessment Pattern

Bloom's Catagony	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	30
Apply	10	10	20
Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	0

	K.S.F	-		Technology			ition	
				hnology in E anoscience a				
		lours/Wee			Credit		aximum Mark	<u> </u>
Semes	ter		P	Total hrs	Credit	C	· · · · ·	
	200 L 3	<u>Т</u> 0	P 0	45	3	40	E 60	Total 100
	cience and Tec	•	•	45	3	40	00	100
	ys to physical pr			to a new thre	at environn	nent – Nanc	technology	
	bio chemical w							[9]
	ion and vehicles	•		•	,			
	ermeasure and A				J-			
	on and diagnostic			gical agents –	Quantum E	Dots to prote	ct satellites	
from m	issile attacks –	Nanotech	nology for a	camouflage a	and stealth	Application	s – Nano-	[9]
reinford	ed composites for	or structura	al and ablative	e applications	- Nanocor	nposite as b	ourning rate	
catalys	s for composite	olid prope	llants.					
	s and Actuators							
	nechanical Senso		•	•			•••	[9]
	nti-vibration mou	-		-			Transducer	
	tions – Nanomat			erwater, LPG	and Chemi	cal agent.		
	ations of Nanoc			monont Mog	noto None	Structured	Staala far	
	Nanotechnology			-				[0]
-	neration power p prcing soft body a			•				[9]
	um electron dev		enais – Super	пусторновіс	coatings – i		in ennitiers	
	chnology in Sat		onment and	Healthcare				
	chnology for env				vst – Nano	particles in l	bio-sensina	
	rly diagnostics i		-		-		-	
	ical and cance							[9]
	tion unit - Texti							
•	tion, Energy and		-					
•				Hours				45
Refere	nce(s):							
	R. Mahajan, "Nan Technology , Inc		hts", Issue 3	Centre for Kr	owledge M	anagement	of Nanosci.	
2 (Christian Ngo, Ma 014.		n de Voorde,	"Nanotechno	logy for Def	ense and Se	ecurity", Sprin	ger,
3 J	erome. C. Glenn 006.	, "Nanotec	hnology: Futi	ure military en	vironmenta	I health cons	siderations", E	Isevier
	boo. Chang W.N., "Nar	ofibres fat	prication, per	formance and	application	s', Nova Sci	ence Publishe	ers Inc,

Course Content and Lecture Schedule

S.No	Торіс				
1	NANO SCIENCE AND TECHNOLOGY ACTIVITIES				
1.1	Pathways to physical protection	1			
1.2	Responding to a new threat environment	1			
1.3	Nanotechnology enabled bio chemical weapons – Nuclear Bio Chemical (NBC) Sensor	1			
1.4	Military applications	1			
1.5	Directed self-assembly using conventional lithography	1			
1.6	Propulsion and vehicles	1			
1.7	Propellants and Explosives	1			
1.8	Artificial intelligence materials	1			

	M.Tech.(NST) - Degree Programme 2022-2023	1					
2	COUNTERMEASURE AND AEROSPACE						
	STRATEGIES						
2.1	Detection and diagnostics of chemical and biological	1					
	agents						
2.2	Quantum Dots to protect satellites from missile attacks	1					
2.3	Nanotechnology for camouflage and stealth Applications	1					
2.4	Nano-reinforced composites for structural and ablative application	1					
2.5	Nanocomposite as burning rate catalysts for composite solid propellants	1					
3	SENSORS AND ACTUATORS						
3.1	Nano-mechanical Sensors for Security and Surveillance Systems	1					
3.2	Nuclear Technology	1					
3.3	Real Time Anti-vibration mount using a Nano shear thickening fluid	1					
3.4	Nano-crystallites for Transducer Applications	1					
3.5	Nanomaterials for sensors	1					
3.6	Underwater, LPG and Chemical agent.	1					
4	APPLICATIONS OF NANOCOMPOSITES						
4.1	Role of Nanotechnology in Next Generation Permanent Magnets	1					
4.2	Nano Structured Steels for next generation power plants – Polymer Nanocomposites for Defence applications	1					
4.3	Nanofluids in reinforcing soft body armour materials	1					
4.4	Super hydrophobic coatings	1					
4.5	Nano electron emitters for vacuum electron devices	1					
5	NANOTECHNOLOGY IN SAFETY, ENVIRONMENT AND HEALTHCARE						
5.1	Nanotechnology for environmental safety	1					
5.2	Green nanocatalyst	1					
5.3	Nanoparticles in bio-sensing and early diagnostics in contaminant food	1					
5.4	Nanomaterials in Dentistry	1					
5.5	Nanomaterilas in biomedical and cancer hyperthermia Applications	1					
5.6	Carbon nanotube for mobile water purification unit	1					
5.7	Textiles	1					
5.8	Biological and medical applications	1					
5.9	Membrane based water purification, Energy and Environment	1					
5.10	Solar cells and Batteries	1					
_	Total hours	45					

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

M.Tech.(NST) - Degree Programme 2022-202	3
--	---

60 PNT E34	Nanotechnology in Food	Category	L	т	Р	Credit	t
60 PNT E34	Preservation and Safety Management	PE	3	0	0	3	

Objective

- To acquire extensive knowledge in food safety and quality control.
- To understand food safety management in different packing process
- To study the food Laws and its standard measurement system
- To analysis food equipment, disposal of waste, importance food preservation materials.
- To learn the Nanotechnology in Food Packaging techniques, advantages and its applications.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explore basic principles of food safety quality control and the safety measures in Handling of food equipment and disposal of waste.	Apply
CO2	Recognize the importance of food quality management and the importance of GLP, GMP and HACCP concept.	Analyze
CO3	Follow the regulations of FSSAI, ISO, food Adulteration Act and the importance of export opportunities and its regulations related to food products	Apply
CO4	Identify the significance of packaging, the regulations and designing for packaged foods.	Remember
CO5	Analyze the roles of nanotechnology in packaging, the types of Nanocoating and food packaging applications	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	3	3	1
CO2	3	2	2	2	2	3
CO3	3	2	2	3	3	1
CO4	3	3	3	3	2	3
CO5	3	3	3	1	2	2

Assessment Pattern

Bloom's Catorony	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	10

				-	Technology				
60 PNT E34 - Nanotechnology in Food Preservation and Safety Management									
Department of Nanoscience and Technology									
Semes	ter		ours/Weel		Total hrs.	Credit	-	aximum Mar	-
		L	T	Р	. –	С	C	E	Total
		3	0	0	45	3	40	60	100
	afety imp								
•		-		•	aining & Educ			-	
			-		f processing	• •	•	-	[9]
			•	• •	uipment; Safe	ety limits of s	sanitizers; p	est control;	
<u> </u>		•	al of waste	9.					
	afety Mai	-							
	-		•		- Physical, ch				[9]
					practice (GLP); Good ma	nufacturing	practices	[0]
		nalysis	of critical c	ontrolpoints((HACCP).				
Food la									
	Food Safety and Standards Act (FSSAI), ISO 22000 – Importance and Implementation;								
Prevention of Food Adulteration Act, QA Audit, IPR and Patents, Export opportunities for food									[0]
					IPR and Pat	ents, Expor	t opportuniti	es for food	[9]
product	s - APED	A (Agric				ents, Expor	t opportuniti	es for food	[9]
product Food P	s - APED/ ackaging	A (Agric I	ultural and	Processed	IPR and Pat Foods Export	ents, Expor Developme	t opportuniti ent Authority	es for food);WTO	[9]
product Food P Packag	s - APED/ ackaging ing – it's	A (Agric I importa	ultural and nce, esser	Processed	IPR and Pat Foods Export of an ideal p	ents, Expor Developme package; va	t opportuniti ent Authority arious food p	es for food);WTO packaging	
product Food P Packag materia	s - APED/ ackaging ing – it's ls and th	A (Agric I importa neir cha	ultural and nce, esser aracteristics	Processed ntial features s, methods	IPR and Pat Foods Export of an ideal p of package	ents, Expor Developme backage; va testing, mo	t opportuniti ent Authority arious food p odern and	es for food);WTO backaging traditional	[9]
product Food P Packag materia packagi	s - APED/ ackaging ing – it's ls and th ng mater	A (Agric I importa neir cha rial rece	ultural and nce, esser aracteristics ent trends	Processed ntial features s, methods in the field	IPR and Pat Foods Export of an ideal p of package d of packagin	ents, Expor Developme backage; va testing, mo ng (active	t opportuniti ent Authority arious food p odern and packaging,	es for food);WTO backaging traditional intelligent	
product Food P Packag materia packagi packagi	s - APED/ ackaging ing – it's ls and th ng mater ng, RFID)	A (Agric I importa neir cha rial rece), regula	ultural and nce, esser aracteristics ent trends ations and o	Processed ntial features s, methods in the field designing for	IPR and Pat Foods Export of an ideal p of package	ents, Expor Developme backage; va testing, mo ng (active	t opportuniti ent Authority arious food p odern and packaging,	es for food);WTO backaging traditional intelligent	
product Food P Packag materia packagi packagi Nanote	s - APED, ackaging ing – it's ls and th ng mater ng, RFID) chnology	A (Agric I importa neir cha rial rece), regula / in Foo	ultural and nce, esser aracteristics ent trends itions and o od Packagi	Processed ntial features s, methods in the field designing for ing	IPR and Pat Foods Export of an ideal p of package d of packagin r packaged fo	ents, Expor Developme backage; va testing, mo ng (active ods , nutritio	t opportuniti ent Authority arious food p odern and packaging, onal labeling	es for food);WTO backaging traditional intelligent	
product Food P Packag materia packagi packagi Nanote Nanote	s - APED, ackaging ing – it's is and th ng mater ng, RFID) chnology	A (Agric importa neir cha rial rece), regula / in Foo in food in	ultural and nce, esser aracteristics ent trends itions and o d Packagi ndustry and	Processed ntial features s, methods in the field designing for ing d packaging,	IPR and Pat Foods Export of an ideal p of package d of packagin r packaged for Food process	ents, Expor Developme backage; va testing, mo ng (active ods , nutritic sing and bio	t opportuniti ent Authority arious food p odern and packaging, onal labeling -security –Co	es for food);WTO backaging traditional intelligent ontaminant	[9]
product Food P Packag materia packagi packagi Nanote detectio	s - APED, ackaging ing – it's is and th ng mater ng, RFID chnology chnology i n – Sma	A (Agric importa neir cha rial rece), regula / in Foo in food in rt pack	ultural and nce, esser aracteristics ent trends ations and o od Packagi ndustry and aging, Ant	Processed ntial features s, methods in the field designing for ing d packaging, imicrobial F	IPR and Pat Foods Export of an ideal p of package d of packagin r packaged fo Food process unctionality, I	ents, Expor Developme backage; va testing, mo ng (active ods , nutritio sing and bio Nano Struct	t opportuniti ent Authority arious food p odern and packaging, onal labeling -security –C tured Coatir	es for food);WTO backaging traditional intelligent ontaminant	
product Food P Packag materia packagi packagi Nanote detectio	s - APED, ackaging ing – it's is and th ng mater ng, RFID chnology chnology i n – Sma	A (Agric importa neir cha rial rece), regula / in Foo in food in rt pack	ultural and nce, esser aracteristics ent trends ations and o od Packagi ndustry and aging, Ant	Processed ntial features s, methods in the field designing for ing d packaging, imicrobial F	IPR and Pat Foods Export of an ideal p of package d of packagin r packaged for Food process	ents, Expor Developme backage; va testing, mo ng (active ods , nutritio sing and bio Nano Struct	t opportuniti ent Authority arious food p odern and packaging, onal labeling -security –Ce tured Coatir s.	es for food);WTO backaging traditional intelligent ontaminant ng, Natural	[9]
product Food P Packag materia packagi packagi Nanote detectic biopolyr	s - APED, ackaging ing – it's ls and th ng mater ng, RFID chnology chnology i n – Sma ners, adv	A (Agric importa neir cha rial rece), regula / in Foo in food in rt pack	ultural and nce, esser aracteristics ent trends ations and o od Packagi ndustry and aging, Ant	Processed ntial features s, methods in the field designing for ing d packaging, imicrobial F	IPR and Pat Foods Export of an ideal p of package d of packagin r packaged fo Food process unctionality, I	ents, Expor Developme backage; va testing, mo ng (active ods , nutritio sing and bio Nano Struct	t opportuniti ent Authority arious food p odern and packaging, onal labeling -security –Ce tured Coatir s.	es for food);WTO backaging traditional intelligent ontaminant	[9]
product Food P Packag packagi packagi packagi Nanote detectic biopolyr Referen	s - APED, ackaging ing – it's as and th ng mater ng, RFID chnology chnology i n – Sma ners, adv	A (Agric importa neir cha rial rece), regula / in Foo in food in antages	ultural and nce, esser aracteristics ent trends ations and o od Packagi ndustry and aging, Ant s of nanoma	Processed ntial features s, methods in the field designing for ing d packaging, imicrobial F aterials in fo	IPR and Pat Foods Export of an ideal p of package d of packagin r packaged fo Food process unctionality, I od packaging	ents, Expor Developme backage; va testing, mo ng (active ods , nutritic sing and bio Nano Struct application	t opportuniti ent Authority arious food p odern and packaging, onal labeling -security –C tured Coatir s.	es for food);WTO backaging traditional intelligent ontaminant ng, Natural otal Hours	[9]
product Food P Packag materia packagi packagi Nanote detectic biopolyr Referen 1 A	s - APED, ackaging ing – it's s and th ng mater ng, RFID) chnology i n – Sma ners, adv nce(s): thalye AS	A (Agric importa neir cha rial rece), regula / in Foo in food in ant pack antages 5. Plastic	ultural and nce, esser aracteristics ent trends itions and o od Packagi ndustry and aging, Ant of nanoma	Processed ntial features s, methods in the field designing for ing d packaging, imicrobial F aterials in fo Packaging T	IPR and Pat Foods Export of an ideal p of package d of packagin r packaged for Food process unctionality, I od packaging	ents, Expor Developme backage; va testing, mo ng (active ods , nutritic sing and bio Nano Struct applications Hill Publishi	t opportuniti ent Authority arious food p odern and packaging, onal labeling -security –Co tured Coatir s. T ng Company	es for food);WTO backaging traditional intelligent ontaminant ng, Natural otal Hours	[9] [9] 45
product Food P Packag materia packagi packagi Nanote detectic biopolyr Referen 1 A 2 N	s - APED, ackaging ing – it's s and th ng mater ng, RFID <u>)</u> chnology i n – Sma ners, adv nce(s): thalye AS lortimone	A (Agric importa neir cha rial rece), regula / in Foo in food in nt pack antages 5. Plastic , Sara a	ultural and nce, esser aracteristics ent trends itions and o od Packagi ndustry and aging, Ant s of nanoma cs in Food nd Wallace	Processed ntial features s, methods in the field designing for ing d packaging, imicrobial F aterials in fo Packaging T e, Carot, —H	IPR and Pat Foods Export of an ideal p of package d of package food process unctionality, I od packaging	ents, Expor Developme backage; va testing, mo ng (active ods , nutritic sing and bio Nano Struct applications Hill Publishi Industry Br	t opportuniti ent Authority arious food p odern and packaging, onal labeling -security –Co tured Coatir s. T ng Company iefing Series	es for food);WTO backaging traditional intelligent ontaminant ng, Natural otal Hours y 1992. s), Blackwell S	[9] [9] 45 Science,
Product Food P Packag materia packagi packagi packagi Nanote detectic biopolyr Referent 1 A 2 M 3 R	s - APED, ackaging ing – it's ls and th ng mater ng, RFID chnology chnology chnology n – Sma ners, adv nce(s): thalye AS lortimone adomirLá	A (Agric importa neir cha rial rece), regula / in Foo in food in rt pack antages 6. Plastic , Sara a isztity, F	ultural and nce, esser aracteristics ent trends itions and o od Packagi ndustry and aging, Ant s of nanoma cs in Food nd Wallace	Processed ntial features s, methods in the field designing for ing d packaging, imicrobial F aterials in fo Packaging T e, Carot, —H	IPR and Pat Foods Export of an ideal p of package d of packagin r packaged for Food process unctionality, I od packaging	ents, Expor Developme backage; va testing, mo ng (active ods , nutritio sing and bio Nano Struct applications <u>Hill Publishi</u> Industry Br – Vol. III - F	t opportuniti ent Authority arious food p odern and packaging, onal labeling -security –Ce tured Coatir s. T ng Company iefing Series ood Laws a	es for food);WTO backaging traditional intelligent ontaminant ng, Natural otal Hours y 1992. s), Blackwell S nd Regulatio	[9] [9] 45 Science, n - 2009

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	FOOD SAFETY IMPLEMENTATION	
1.1	Principles of food safety.	1
1.2	Food safety quality control.	1
1.3	Cleaning and sanitization.	1
1.4	Sterilization-physical methods.	1
1.5	Sterilization- Chemical methods and filtration.	1
1.6	Pest control methods.	1
1.7	Training and education for food handling.	1
1.8	Safety limits of sanitizers.	1
1.9	Disposal of wastes.	1

	M.Tech.(NST) - Degree Programme 2022-2023	
2	FOOD SAFETY MANAGEMENT	
2.1	Food safety management introduction.	1
2.2	Food safety quality management system.	1
2.3	Types of hazards.	1
2.4	Control of hazards.	1
2.5	Good laboratory practices.	1
2.6	Training on GLP.	1
2.7	Good manufacturing practices.	1
2.8	Hazard analysis of critical control points.	1
2.9	HACCP principles.	1
3	FOOD LAWS	
3.1	Introduction to food laws	1
3.2	FSSAI	1
3.3	ISO 22000	1
3.4	Prevention of food adulteration.	1
3.5	QA audit	1
3.6	Intellectual property rights	1
3.7	Export opportunities of food	1
3.8	APEDA	1
3.9	World Trade Organization	1
4	FOOD PACKAGING	
4.1	Food packaging introduction	1
4.2	Essential features of an ideal packaging	1
4.3	Various food packaging materials	1
4.4	Methods of package testing	1
4.5	Modern and traditional packaging	1
4.6	Active packaging methods	1
4.7	Intelligent packaging and RFID packaging	1
4.8	Regulations and designing for packaged foods.	1
4.9	Nutritional labelling	1
5	NANOTECHNOLGOY IN FOOD PACKAGING	
5.1	Nanotechnology in food industry	2
5.2	Food processing methods	1
5.3	Biosecurity	1
5.4	Contaminant detection methods	1
5.5	Smart packaging techniques	1
5.6	Antimicrobial functionality of materials	1
5.7	Nanostructured coatings.	1
5.8	Natural biopolymers	1
5.9	Advantages of nanomaterials in food packaging	1
	Total	

Course Designers

Mr. R. Mohanraj (mohanrajr@ksrct.ac.in)

M.Tech.(NST) - Degree Programme 2022-2023									
	Nanotechnology in Textile and Agriculture Industry		Category	L	т	Ρ	Credit		
60 PNT E35			BS	3	0	0	3		

Objective

- To provide an insight into the fundamentals of Nanomaterials based fabrics.
- To address modern trends in nano Nano Fiber Production
- To help the learners to understand Nano Finishing In Textiles
- To obtain the knowledge of the Agricultural Nanotechnology
- To know the role of nanoparticles in Precision farming and Plant Resource Management for future amelioration.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Learn the scientific concepts underlying engineering and technological applications in Nano-textiles	Understand
CO2	Identify suitable nanoparticles & Nano fibers in design methodology in textiles	Analyze
CO3	Successful completion of Nano Composites implementation in textiles	Analyze
CO4	Evaluate agricultural technology for precision farming using Nano sensors	Apply
CO5	Familiarize with the regulations and guidelines in agricultural sector	Remember

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	2
CO2	2	3	2	3	2	2
CO3	3	3	2	2	2	3
CO4	2	2	2	2	3	3
CO5	3	3	2	2	2	2

Assessment Pattern

Plaamia Catagory	Continuous Assess	sment Tests (Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	10

	K.S.R	angasamy	College of T	echnology	– Autonom	ous R 2022		
	60 PNT				and Agricult		ry	
				Science a	nd Technolo	ogy		
Semester	ŀ	lours / Wee		Total	Credit		ximum Marks	
	L	Т	Р	Hours	С	CA	ES	Total
	3	0	0	45	3	40	60	100
Properties of Physical prop assembly- Hy coating.	erties - Mee	chanical pro						[9]
Production a Electro spinnin electro spun Nano fiber - C cyclodextrins polymer/clay Nano compos	ng of Nano f ontrolling the – Electrospii	ibers – Char e morphologi	acterization es of electro	spun Nano	fiber - Nanos	tructured po	olymers with	[9]
Fabrication o Scaffold fabri switchable co spinning- Mult	cation and e atings - Anti	electrospinni -adhesive na	ng- scaffold anocoating d	of fibers and	l textiles - P	olymer fibe	r using melt	[9]
Nanotechnolo Natural resou system- Precis protection- Se germination, g plant Nano bionics	rce manage sion agricultu ed	ment- Soil f ure monitorin	g system- S	mart deliver	y systems- C	rop improve	ement- Crop	[9]
Applications Agriculture: Na diseases and crop nutrition- anti-static and	residues- na Nano robotic	ano sensor fo s in agricultu	or air pollutio ire. Textile :	on control Soil resistan	Nano pestic ice, wrinkle r	ides- smart esistance, a	t fertilizer for anti-bacteria, aning fabrics	[9]
							Total ho	urs: 45
Reference(s):								
							n, Eric Lichtfou	ise.
					"Nanofabrica t", Wiley – V(ds Biomedical	

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	Properties of Nano fibers	
1.1	Physical properties	1
1.2	Mechanical properties	1
1.3	Thermal properties	1
1.4	Chemical properties	1
1.5	Self-assembly	1
1.6	Hydrophobic properties	1
1.7	Hydrophilic properties	1
1.8	Electrical properties	1
1.9	Super paramagnetic coating	1
2	Production and Functionality of Nano fibers	
2.1	Electro spinning of Nano fibers	1
2.2	Characterization analysis of Nanofibers	1
2.3	Continuous yarns from electro spun Nano fiber	1
2.4	Controlling the morphologies of electro spun Nano fiber	1
2.5	Nanostructured polymers with cyclodextrins	1
2.6	Electrospinning by capillary method	1
2.7	charge injection method	1
2.8	Preparation of polymer Nano composites	1
2.9	Preparation of clay Nano composites	1
3	Fabrication of nano composites in Textiles	
3.1	Scaffold fabrication	1
3.2	Electrospinning	1
3.3	scaffolds for tissue engineering	1
3.4	Synthesis of smart switchable coatings	1
3.5	Anti-adhesive nanocoating of fibers	1
3.6	Anti-adhesive nanocoating of textiles	1
3.7	Polymer fiber using melt spinning	1
3.8	Multifunctional polymer Nano composites	1
3.9	nylon-6 Nano composites from polymerization	1
4	Nanotechnology in Agriculture	
4.1	Natural resource management	1
4.2	Soil fertility management	1
4.3	Precision farming and smart delivery system	1
4.4	Precision agriculture monitoring system	1
4.5	Smart delivery systems	1
4.6	Crop improvement	1
4.7	Crop protection- Seed germination, growth and development	1
4.8	Sensing of air pollutant by nanomaterial	1
4.9	soil remediation-plant Nano bionics	1
5	Applications	
5.1	Agriculture: Nano formulations of agrochemicals	1
5.2	nano sensors in crop protection	1
5.3	Identification of diseases and residues	1
5.4	Nano sensor for air pollution control, Nano pesticides	1

	M.Tech.(NST) - Degree Programme 2022-2023	
5.5	Smart fertilizer for crop nutrition-Nano robotics in agriculture.	1
5.6	Textile : Soil resistance, wrinkle resistance	1
5.7	anti-bacteria, anti-static and UV-protection	1
5.8	flame retardation	1
5.9	Improvement of dye ability and Self-cleaning fabrics.	1
	Total	45

Course Designers

Dr.T.Baranidharan - baranidharan@ksrct.ac.in

		Category	L	Т	Ρ	Credit
60 PNT E36	Self Assembly of Nanostructures	PE	3	0	0	3

Objective(s)

- To extend their knowledge of design of innovative nanostructured materials based on basic chemistry, physics, biology
- To apply the self-assembly concepts in nanoelectronics, nano photovoltaic and energy • materials

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able

CO1	To know about the basic concept of self-assembled nanostructures	Remember, Understand, Apply
CO2	To know more about the nanomanipulators and design of materials	Remember, Understand, Aanalyze
CO3	Identify the fabrication of nanostructured materials	Remember, Understand, Analyze
CO4	Identify the natural nanomaterials	Remember, Understand, Apply
CO5	Understand the applications of nanomaterials in biological materials	Remember, Understand, Apply

Mapping with Programme Outcomes

COURSE NAME	со		РО						PSO			
COURSE NAME		1	2	3	4	5	6	1	2	3		
	CO1	3	3	1	3	2	3	3	1	3		
	CO2	2	2	2	2	3	2	3	1	3		
Self-Assembly of Nanostructures	CO3	3	3	2	2	2	3	3	3	3		
Nanostructures	CO4	2	3	3	2	2	2	3	1	3		
	CO5	3	3	2	1	3	2	3	2	3		

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

Assessment Pattern

Bloom's Category	Continuous Ass (Mar		End Semester Examination (Marks)
	1	2	
Remember	10	10	20
Understand	10	10	30
Apply	10	10	20
Analyze	10	10	10
Evaluate	10	10	10
Create	10	10	10

						f Nanostruc			
					no Science an				
Se	mester	ŀ	lours/Weel			Credit		ximum Marl	ks
		L	Т	Р	Total hrs.	С	CA	ES	Tota
		3	0	0	45	3	40	60	100 1
Self phys	sical, biol	ation of na logical self-	assembly- A	ssembling	nechanism-self and patterning lanowires-Nanc	of particles-	of nanostruc -self organiza	tures-chemi tion of diffe	ical, rent ^[9]
Self	-assembl		ers(SAM)-g		assembly-Nano rippers-Design			graphy-Surf	ace[9]
Bott relat	om up m ted devi	ces-Langm	g-bottom up uir bladgett	films(LB)	-self-assembly -principle of for	of single ele ormation of ion of LB filn	monolayer	formation-fi	taic rom ^[9]
	IOSCAL		ALS .						bled
Self mon natu APF Bio syst	ADDECTOR ADOTOR	E MATERIA ly by mic applications scale mater DNS approach f erhydropho	ALS ro contact -Macroscop als or complex picity-self-cl	printing-cr ic expressi super stru eaning pro	reating the si ions of Natura ctures and bio perty-multi sca	tamp-substra I nanomater logical work	ate-creating ials-Hierarchi d-self-assemb g and functio	self-assemb ical ordering	g in ^[9]
Self mon natu APF Bio syst nano	IOSCAL -assembl iolayers-a ral nanos PLICATIC inspired ems-sup oscale m	E MATERIA ly by mic applications scale mater DNS approach f erhydropho	ALS ro contact -Macroscop als or complex picity-self-cl	printing-cr ic expressi super stru eaning pro	reating the si ions of Natura	tamp-substra I nanomater logical work	ate-creating ials-Hierarchi d-self-assemb g and functio	self-assemb ical ordering	g in ^[9] iical iical ^[9]
Self mon natu APF Bio syst nano Tota	HOSCAL -assemble indayers-a ral nanos PLICATIC inspired ems-supposcale m al Hours	E MATERIA by by mic applications scale mater NNS approach f erhydropho aterials: pro	ALS ro contact -Macroscop als or complex picity-self-cl	printing-cr ic expressi super stru eaning pro	reating the si ions of Natura ctures and bio perty-multi sca	tamp-substra I nanomater logical work	ate-creating ials-Hierarchi d-self-assemb g and functio	self-assemb ical ordering	g in ^[9]
Self mon natu APF Bio syst nano Tota	HOSCAL -assemblio lolayers-a ral nanos PLICATIC inspired ems-sup oscale m al Hours t Book(s	E MATERIA ly by mic applications scale mater DNS approach f erhydropho aterials: pro	ALS To contact -Macroscop ials or complex picity-self-cl teins-lipids-	printing-cr ic expressi super stru eaning pro DNA and R	reating the si ions of Natura ctures and bio perty-multi sca	tamp-substra I nanomater logical world ling ordering composite m	ate-creating ials-Hierarchi d-self-assemb g and functio aterials	self-assemb ical ordering bly in biolog on in biolog	g in ^[9] ical ical ^[9] 45
Self mon APF Bio syst nanc Tota 1.	ADSCAL assemblic indayers-a iral nanos PLICATIC inspired ems-sup- oscale m al Hours t Book(s Self-org	E MATERIA ly by mic applications scale mater DNS approach f erhydropho aterials: pro):):	ALS ro contact -Macroscop als or complex bicity-self-cl teins-lipids-	printing-cr ic expressi super stru eaning pro DNA and R erials: Nano	reating the si ions of Natura ictures and bio perty-multi sca iNA-shell as a c	tamp-substra I nanomater logical work ling ordering composite m	ate-creating ials-Hierarchi d-self-assemb g and functio aterials	self-assemb ical ordering bly in biolog on in biolog	g in ^[9] ical ical ^[9] 45
Self mon natu APP Bio syst nano Tota 1.	ADSCAL assemblic indayers-a iral nanos PLICATIC inspired ems-sup- oscale m al Hours t Book(s Self-org	E MATERIA ly by mic applications scale mater DNS approach f erhydropho aterials: pro): janized nan	ALS ro contact -Macroscop als or complex bicity-self-cl teins-lipids-	printing-cr ic expressi super stru eaning pro DNA and R erials: Nano	reating the si ions of Natura ctures and bio perty-multi sca NA-shell as a c structure science	tamp-substra I nanomater logical work ling ordering composite m	ate-creating ials-Hierarchi d-self-assemb g and functio aterials	self-assemb ical ordering bly in biolog on in biolog	g in ^[9] ical ical ^[9] 45
Self mon natu APF Bio syst nano Tota 1.	IOSCAL -assembliolayers-a ral nanos PLICATIC inspired ems-sup- oscale m al Hours t Book(s Self-org Self-ass erence(s	E MATERIA ly by mic applications scale mater DNS approach f erhydropho aterials: pro): janized nan sembled nan	ALS To contact -Macroscop als or complex picity-self-cl teins-lipids- poscale mate	printing-cr ic expressi super stru eaning pro DNA and R erials: Nano s: Jinz.zhan	reating the si ions of Natura ctures and bio perty-multi sca NA-shell as a c structure science	tamp-substra I nanomater logical work ling ordering composite m	ate-creating ials-Hierarchi d-self-assemb g and functio aterials	self-assemb ical ordering bly in biolog on in biolog	g in ^[9] ical ical ^[9] 45
Selfi mon natu APF Bio syst nand Tota Tota 1. 2 Refe	ADDECTOR ADD	E MATERIA ly by mic applications scale mater DNS approach f erhydropho aterials: pro): janized nan sembled nan	ALS To contact -Macroscop als or complex picity-self-cl teins-lipids- oscale mate nostructures	printing-cr ic expressi super stru eaning pro DNA and R erials: Nano s: Jinz.zhan ations by G	reating the st ions of Natura ctures and bio perty-multi sca NA-shell as a c structure scient g and zhonglint unter schmid	tamp-substra I nanomater logical work ling ordering composite m	ate-creating ials-Hierarchi d-self-assemb g and functio aterials	self-assemb ical ordering bly in biolog on in biolog	g in ^[9] ical ical ^[9] 45

Course Content and Lecture

Schedule

S. No.	Topics	No. of hours
1.0	INTRODUCTION	
1.1	Self-organization of nanomaterials	1
1.2	Growth mechanism	2
1.3	Self-assembly of nanostructures	1
1.4	Chemical, physical, biological self-assembly	1
1.5	Assembling and patterning of particles	1
1.6	Self-organization of different Nano morphologies	2
1.7	Quantum dots	1
1.8	Nanorods-nanowires-nanotubes	
2.0	FABRICATION METHODS	
2.1	Self-assembled monolayers(SAM)	1
2.2	Guided self-assembly	1
2.3	Nanolithography	2
2.4	Surface topography	1
2.5	Surface wetting	1
2.6	Grippers-Design-gripper arm geometry	1
2.7	Electrostatic force	1
2.8	Nanomanipulators	1
3.0	BOTTOM UP APPROACH	
3.1	Bottom up manufacturing-	1
3.2	Self-assembly of single electron transistor	2
3.3	Photovoltaic related devices	1
3.4	Langmuir bladgett films(LB)	1
3.5	Principle of formation of monolayer formation	1
3.6	From molecules to nanoparticles	1
3.7	Compression of monolayer-fabrication of LB films	1
3.8	Applications	1
4.0	NANOSCALE MATERIALS	
4.1	Self-assembly by micro contact printing	1
4.2	Creating the stamp	1
4.3	Creating self-assembled monolayers	1
4.4	Substrate applications	2
4.5	Macroscopic expressions of Natural nanomaterials	2
4.6	Hierarchical ordering in natural nanoscale materials	2
5.0	APPLICATIONS	
5.1	Bio inspired approach for complex super structures and biological world	2
5.2	Self-assembly in biological systems	1
5.3	Super hydrophobicity	1
5.4	Self-cleaning property	1
5.5	Multi scaling ordering and function in biological nanoscale materials	1
5.6	Proteins-lipids	2
5.7	DNA and RNA	1
5.8	Shell as a composite materials	1

Course Designer

Mr.R.Mohanraj - mohanrajr@ksrct.ac.in